Loading…

Beta-Hemolytic Bacteria Selectively Trigger Liposome Lysis, Enabling Rapid and Accurate Pathogen Detection

For more than a century, blood agar plates have been the only test for beta-hemolysis. Although blood agar cultures are highly predictive for bacterial pathogens, they are too slow to yield actionable information. Here, we show that beta-hemolytic pathogens are able to lyse and release fluorophores...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2017-10, Vol.2 (10), p.1441-1451
Main Authors: Sum, Rongji, Swaminathan, Muthukaruppan, Rastogi, Sahil Kumar, Piloto, Obdulio, Cheong, Ian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For more than a century, blood agar plates have been the only test for beta-hemolysis. Although blood agar cultures are highly predictive for bacterial pathogens, they are too slow to yield actionable information. Here, we show that beta-hemolytic pathogens are able to lyse and release fluorophores encapsulated in sterically stabilized liposomes whereas alpha and gamma-hemolytic bacteria have no effect. By analyzing fluorescence kinetics, beta-hemolytic colonies cultured on agar could be distinguished in real time with 100% accuracy within 6 h. Additionally, end point analysis based on fluorescence intensity and machine-extracted textural features could discriminate between beta-hemolytic and cocultured control colonies with 99% accuracy. In broth cultures, beta-hemolytic bacteria were detectable in under an hour while control bacteria remained negative even the next day. This strategy, called beta-hemolysis triggered-release assay (BETA) has the potential to enable the same-day detection of beta-hemolysis with single-cell sensitivity and high accuracy.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.7b00333