Loading…

Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information

A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2008-04, Vol.112 (4), p.1658-1677
Main Authors: Blackard, J.A., Finco, M.V., Helmer, E.H., Holden, G.R., Hoppus, M.L., Jacobs, D.M., Lister, A.J., Moisen, G.G., Nelson, M.D., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann, D.L, Winterberger, K.C., Brandeis, T.J., Czaplewski, R.L., McRoberts, R.E., Patterson, P.L., Tymcio, R.P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed models relating field-measured response variables to plot attributes serving as the predictor variables. The plot attributes came from intersecting plot coordinates with geospatial datasets. Consequently, these models serve as mapping models. The geospatial predictor variables included Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; land cover proportions and other data from the National Land Cover Dataset (NLCD); topographic variables; monthly and annual climate parameters; and other ancillary variables. We segmented the mapping models for the U.S. into 65 ecologically similar mapping zones, plus Alaska and Puerto Rico. First, we developed a forest mask by modeling the forest vs. nonforest assignment of field plots as functions of the predictor layers using classification trees in See5©. Secondly, forest biomass models were built within the predicted forest areas using tree-based algorithms in Cubist©. To validate the models, we compared field-measured with model-predicted forest/nonforest classification and biomass from an independent test set, randomly selected from available plot data for each mapping zone. The estimated proportion of correctly classified pixels for the forest mask ranged from 0.79 in Puerto Rico to 0.94 in Alaska. For biomass, model correlation coefficients ranged from a high of 0.73 in the Pacific Northwest, to a low of 0.31 in the Southern region. There was a tendency in all regions for these models to over-predict areas of small biomass and under-predict areas of large biomass, not capturing the full range in variability. Map-based estimates of forest area and forest biomass compared well with traditional plot-based estimates for individual states and for four scales of spatial aggregation. Variable importance analyses revealed that MODIS-derived information could contribute more predictive power than other classes of information when used in isolation. However, the true contribution of each variable is confounded by high correlations. Consequently, excluding any one class of variables resulted in only small effects on overall map accuracy. An estimate of total C pools in live forest biom
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2007.08.021