Loading…
Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine
Measurements were made on board the NOAA RV Ronald H. Brown during the second New England Air Quality Study (NEAQS 2004) to determine the source of the aerosol in the region and how sources and aging processes affect submicrometer aerosol chemical composition and optical properties. Using the Lagran...
Saved in:
Published in: | Journal of Geophysical Research. D. Atmospheres 2006-12, Vol.111 (D23), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measurements were made on board the NOAA RV Ronald H. Brown during the second New England Air Quality Study (NEAQS 2004) to determine the source of the aerosol in the region and how sources and aging processes affect submicrometer aerosol chemical composition and optical properties. Using the Lagrangian particle dispersion model FLEXPART in combination with gas phase tracer compounds, local (urban), regional (NE U.S. urban corridor of Washington, D.C.; New York; and Boston), and distant (midwest industries and North American forest fires) sources were identified. Submicrometer aerosol measured near the source region (Boston Harbor) had a molar equivalence ratio near one with respect to NH4+, NO3−, and SO4=, had a large mass fraction of particulate organic matter (POM) relative to SO4=, and had relatively unoxidized POM. As distance from the source region increased, the submicrometer aerosol measured in the marine boundary layer became more acidic and had a lower POM mass fraction, and the POM became more oxidized. The relative humidity dependence of light extinction reflected the change in aerosol composition being lower for the near‐source aerosol and higher for the more processed aerosol. A factor analysis performed on a combined data set of aerosol and gas phase parameters showed that the POM measured during the experiment was predominantly of secondary anthropogenic origin. |
---|---|
ISSN: | 0148-0227 2156-2202 |
DOI: | 10.1029/2006JD007582 |