Loading…

Molecular afterglow imaging with bright, biodegradable polymer nanoparticles

Ultra-high signal-to-background in vivo imaging is enabled by biocompatible semiconducting polymer nanoparticles. Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, af...

Full description

Saved in:
Bibliographic Details
Published in:Nature biotechnology 2017-11, Vol.35 (11), p.1102-1110
Main Authors: Miao, Qingqing, Xie, Chen, Zhen, Xu, Lyu, Yan, Duan, Hongwei, Liu, Xiaogang, Jokerst, Jesse V, Pu, Kanyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073
cites cdi_FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073
container_end_page 1110
container_issue 11
container_start_page 1102
container_title Nature biotechnology
container_volume 35
creator Miao, Qingqing
Xie, Chen
Zhen, Xu
Lyu, Yan
Duan, Hongwei
Liu, Xiaogang
Jokerst, Jesse V
Pu, Kanyi
description Ultra-high signal-to-background in vivo imaging is enabled by biocompatible semiconducting polymer nanoparticles. Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs)
doi_str_mv 10.1038/nbt.3987
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1951566169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513866482</galeid><sourcerecordid>A513866482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoMotlbBXyAD3ljobJOZzcdcltJqYaVg1duQZM5MUzLJmmSo_ffN0tV2ixcSSA7Jcw4n73kRek_wguBWHHudF20n-Au0T-iS1YR17GWJseA1JpTtoTcp3WCM2ZKx12iv6XBLW97uo9XX4MDMTsVKDRni6MJtZSc1Wj9WtzZfVzra8TofVdqGHsaoeqUdVOvg7iaIlVc-rFXM1jhIb9GrQbkE77bnAfpxfvb99Eu9uvx8cXqyqg2lJNdNjwVQAx3HWg8wKNr2mmLom4EI3gnSUy0wBS56SsFwDQaWrGkNH0B3mLcH6NND3XUMv2ZIWU42GXBOeQhzkqSj5dOsqFDQj8_QmzBHX7orFBe8SILFIzUqB9L6IeSozKaoPKGkFYwtRVOoxT-osnqYrAkeBlvudxIOdxIKk-F3HtWckry4-vb_7OXPXfboCavnZD2ksqXNpNJDyg6-lcvEkFKEQa5jGXG8kwTLjX9k8Y_c-KegH7ZyzXqC_i_4xzCPbaby5EeIT_R8Xuwe44zLXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978700608</pqid></control><display><type>article</type><title>Molecular afterglow imaging with bright, biodegradable polymer nanoparticles</title><source>Nature</source><creator>Miao, Qingqing ; Xie, Chen ; Zhen, Xu ; Lyu, Yan ; Duan, Hongwei ; Liu, Xiaogang ; Jokerst, Jesse V ; Pu, Kanyi</creator><creatorcontrib>Miao, Qingqing ; Xie, Chen ; Zhen, Xu ; Lyu, Yan ; Duan, Hongwei ; Liu, Xiaogang ; Jokerst, Jesse V ; Pu, Kanyi</creatorcontrib><description>Ultra-high signal-to-background in vivo imaging is enabled by biocompatible semiconducting polymer nanoparticles. Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs) &lt;40 nm in diameter that store photon energy via chemical defects and emit long-NIR afterglow luminescence at 780 nm with a half-life of ∼6 min. In vivo , the afterglow intensity of SPNs is more than 100-fold brighter than that of inorganic afterglow agents, and the signal is detectable through the body of a live mouse. High-contrast lymph node and tumor imaging in living mice is demonstrated with a signal-to-background ratio up to 127-times higher than that obtained by NIR fluorescence imaging. Moreover, we developed an afterglow probe, activated only in the presence of biothiols, for early detection of drug-induced hepatotoxicity in living mice.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.3987</identifier><identifier>PMID: 29035373</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/33 ; 14/34 ; 14/5 ; 639/301/357/354 ; 639/925/350/59 ; 639/925/352/2734 ; 64/60 ; 9/10 ; Agriculture ; Animals ; Biodegradability ; Biodegradable Plastics ; Biodegradation ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biopolymers ; Biotechnology ; Defects ; Diagnostic Imaging ; Fluorescence ; HeLa Cells ; Hepatotoxicity ; Humans ; I.R. radiation ; Imaging ; Life Sciences ; Light ; Luminescent Agents ; Lymph nodes ; Mice ; Mice, Nude ; Nanoparticles ; Near infrared radiation ; Neoplasms, Experimental ; Optical properties ; Polymers ; Quantum Dots - chemistry</subject><ispartof>Nature biotechnology, 2017-11, Vol.35 (11), p.1102-1110</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073</citedby><cites>FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073</cites><orcidid>0000-0002-8064-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29035373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Qingqing</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Zhen, Xu</creatorcontrib><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Duan, Hongwei</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Jokerst, Jesse V</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><title>Molecular afterglow imaging with bright, biodegradable polymer nanoparticles</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Ultra-high signal-to-background in vivo imaging is enabled by biocompatible semiconducting polymer nanoparticles. Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs) &lt;40 nm in diameter that store photon energy via chemical defects and emit long-NIR afterglow luminescence at 780 nm with a half-life of ∼6 min. In vivo , the afterglow intensity of SPNs is more than 100-fold brighter than that of inorganic afterglow agents, and the signal is detectable through the body of a live mouse. High-contrast lymph node and tumor imaging in living mice is demonstrated with a signal-to-background ratio up to 127-times higher than that obtained by NIR fluorescence imaging. Moreover, we developed an afterglow probe, activated only in the presence of biothiols, for early detection of drug-induced hepatotoxicity in living mice.</description><subject>14/33</subject><subject>14/34</subject><subject>14/5</subject><subject>639/301/357/354</subject><subject>639/925/350/59</subject><subject>639/925/352/2734</subject><subject>64/60</subject><subject>9/10</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biodegradability</subject><subject>Biodegradable Plastics</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Defects</subject><subject>Diagnostic Imaging</subject><subject>Fluorescence</subject><subject>HeLa Cells</subject><subject>Hepatotoxicity</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Luminescent Agents</subject><subject>Lymph nodes</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nanoparticles</subject><subject>Near infrared radiation</subject><subject>Neoplasms, Experimental</subject><subject>Optical properties</subject><subject>Polymers</subject><subject>Quantum Dots - chemistry</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhoMotlbBXyAD3ljobJOZzcdcltJqYaVg1duQZM5MUzLJmmSo_ffN0tV2ixcSSA7Jcw4n73kRek_wguBWHHudF20n-Au0T-iS1YR17GWJseA1JpTtoTcp3WCM2ZKx12iv6XBLW97uo9XX4MDMTsVKDRni6MJtZSc1Wj9WtzZfVzra8TofVdqGHsaoeqUdVOvg7iaIlVc-rFXM1jhIb9GrQbkE77bnAfpxfvb99Eu9uvx8cXqyqg2lJNdNjwVQAx3HWg8wKNr2mmLom4EI3gnSUy0wBS56SsFwDQaWrGkNH0B3mLcH6NND3XUMv2ZIWU42GXBOeQhzkqSj5dOsqFDQj8_QmzBHX7orFBe8SILFIzUqB9L6IeSozKaoPKGkFYwtRVOoxT-osnqYrAkeBlvudxIOdxIKk-F3HtWckry4-vb_7OXPXfboCavnZD2ksqXNpNJDyg6-lcvEkFKEQa5jGXG8kwTLjX9k8Y_c-KegH7ZyzXqC_i_4xzCPbaby5EeIT_R8Xuwe44zLXQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Miao, Qingqing</creator><creator>Xie, Chen</creator><creator>Zhen, Xu</creator><creator>Lyu, Yan</creator><creator>Duan, Hongwei</creator><creator>Liu, Xiaogang</creator><creator>Jokerst, Jesse V</creator><creator>Pu, Kanyi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid></search><sort><creationdate>20171101</creationdate><title>Molecular afterglow imaging with bright, biodegradable polymer nanoparticles</title><author>Miao, Qingqing ; Xie, Chen ; Zhen, Xu ; Lyu, Yan ; Duan, Hongwei ; Liu, Xiaogang ; Jokerst, Jesse V ; Pu, Kanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>14/33</topic><topic>14/34</topic><topic>14/5</topic><topic>639/301/357/354</topic><topic>639/925/350/59</topic><topic>639/925/352/2734</topic><topic>64/60</topic><topic>9/10</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biodegradability</topic><topic>Biodegradable Plastics</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Defects</topic><topic>Diagnostic Imaging</topic><topic>Fluorescence</topic><topic>HeLa Cells</topic><topic>Hepatotoxicity</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Luminescent Agents</topic><topic>Lymph nodes</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nanoparticles</topic><topic>Near infrared radiation</topic><topic>Neoplasms, Experimental</topic><topic>Optical properties</topic><topic>Polymers</topic><topic>Quantum Dots - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Qingqing</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Zhen, Xu</creatorcontrib><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Duan, Hongwei</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Jokerst, Jesse V</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Qingqing</au><au>Xie, Chen</au><au>Zhen, Xu</au><au>Lyu, Yan</au><au>Duan, Hongwei</au><au>Liu, Xiaogang</au><au>Jokerst, Jesse V</au><au>Pu, Kanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular afterglow imaging with bright, biodegradable polymer nanoparticles</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>35</volume><issue>11</issue><spage>1102</spage><epage>1110</epage><pages>1102-1110</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Ultra-high signal-to-background in vivo imaging is enabled by biocompatible semiconducting polymer nanoparticles. Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs) &lt;40 nm in diameter that store photon energy via chemical defects and emit long-NIR afterglow luminescence at 780 nm with a half-life of ∼6 min. In vivo , the afterglow intensity of SPNs is more than 100-fold brighter than that of inorganic afterglow agents, and the signal is detectable through the body of a live mouse. High-contrast lymph node and tumor imaging in living mice is demonstrated with a signal-to-background ratio up to 127-times higher than that obtained by NIR fluorescence imaging. Moreover, we developed an afterglow probe, activated only in the presence of biothiols, for early detection of drug-induced hepatotoxicity in living mice.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29035373</pmid><doi>10.1038/nbt.3987</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2017-11, Vol.35 (11), p.1102-1110
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_1951566169
source Nature
subjects 14/33
14/34
14/5
639/301/357/354
639/925/350/59
639/925/352/2734
64/60
9/10
Agriculture
Animals
Biodegradability
Biodegradable Plastics
Biodegradation
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biopolymers
Biotechnology
Defects
Diagnostic Imaging
Fluorescence
HeLa Cells
Hepatotoxicity
Humans
I.R. radiation
Imaging
Life Sciences
Light
Luminescent Agents
Lymph nodes
Mice
Mice, Nude
Nanoparticles
Near infrared radiation
Neoplasms, Experimental
Optical properties
Polymers
Quantum Dots - chemistry
title Molecular afterglow imaging with bright, biodegradable polymer nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20afterglow%20imaging%20with%20bright,%20biodegradable%20polymer%20nanoparticles&rft.jtitle=Nature%20biotechnology&rft.au=Miao,%20Qingqing&rft.date=2017-11-01&rft.volume=35&rft.issue=11&rft.spage=1102&rft.epage=1110&rft.pages=1102-1110&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.3987&rft_dat=%3Cgale_proqu%3EA513866482%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-2d08e5ce970bbfefa53db50ed2f187981d5b805e78d55ec7bece4623c7feb9073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1978700608&rft_id=info:pmid/29035373&rft_galeid=A513866482&rfr_iscdi=true