Loading…

Protective role of epigallocatechin-3-gallate on arsenic induced testicular toxicity in Swiss albino mice

[Display omitted] Arsenic, often referred to as the king of poisons is carcinogenic in humans and animals. It affects multiorgan systems including reproduction. The present study was undertaken to explore the protective role of green tea compound, epigallocatechin-3-gallate (EGCG) on arsenic induced...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2017-12, Vol.96, p.685-694
Main Authors: Guvvala, Pushpa Rani, Ravindra, Janivara Parameswaraiah, Rajani, Chukkath Vijayan, Sivaram, Muniandy, Selvaraju, Sellappan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Arsenic, often referred to as the king of poisons is carcinogenic in humans and animals. It affects multiorgan systems including reproduction. The present study was undertaken to explore the protective role of green tea compound, epigallocatechin-3-gallate (EGCG) on arsenic induced testicular toxicity in Swiss albino mice. Thirty two adult male mice were randomly assigned to four groups (n=8). Group I served as control without test chemical. The group II received arsenic (200ppm) through drinking water, group III received only EGCG (20mg/kgb.wt., intraperitoneally, alternate days) and group IV was administered arsenic+EGCG for 40days. Factorial experimental design was employed to assess the treatment effect. The EGCG restored arsenic induced decrements in epididymal sperm concentration, kinematic attributes (total motility, rapid, progressive motile, fast progressive, VSL, VAP, VCL, BCF, LIN, WOB, STR and Type A), structutal membrane integrity, functional membrane integrity and mitochondrial membrane potential. As evidenced by the histoarchitectural studies, the EGCG reversed the deleterious effects of arsenic on testicular malondialdehyde (p
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2017.09.151