Loading…
Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale
A methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) sampling is applied to a real accidental radioactive release that occurred on a continental scale at the end of May 1998 near Algeciras, Spain. The source parameters (i.e., source location and strength) are reconstructed...
Saved in:
Published in: | Journal of applied meteorology (1988) 2008-10, Vol.47 (10), p.2600-2613 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) sampling is applied to a real accidental radioactive release that occurred on a continental scale at the end of May 1998 near Algeciras, Spain. The source parameters (i.e., source location and strength) are reconstructed from a limited set of measurements of the release. Annealing and adaptive procedures are implemented to ensure a robust and effective parameter-space exploration. The simulation setup is similar to an emergency response scenario, with the simplifying assumptions that the source geometry and release time are known. The Bayesian stochastic algorithm provides likely source locations within 100 km from the true source, after exploring a domain covering an area of approximately 1800 km × 3600 km. The source strength is reconstructed with a distribution of values of the same order of magnitude as the upper end of the range reported by the Spanish Nuclear Security Agency. By running the Bayesian MCMC algorithm on a large parallel cluster the inversion results could be obtained in few hours as required for emergency response to continental-scale releases. With additional testing and refinement of the methodology (e.g., tests that also include the source geometry and release time among the unknown source parameters), as well as with the continuous and rapid growth of computational power, the approach can potentially be used for real-world emergency response in the near future. |
---|---|
ISSN: | 1558-8424 0894-8763 1558-8432 1520-0450 |
DOI: | 10.1175/2008jamc1766.1 |