Loading…
Zinc(II) and Copper(II) Hybrid Frameworks via Metal-Ion Metathesis with Enhanced Gas Uptake and Photoluminescence Properties
The fabrication of metal–organic frameworks with controlled structure and desired properties is important but still a challenge. In this work, a zinc(II) framework, {[Zn3(L)2(DABCO)(H2O)]·9DMF} (named as Zn-1), has been synthesized based on [1,1′:3′,1″-terphenyl]-4,4″,5′-tricarboxylic acid (H3L) a...
Saved in:
Published in: | Inorganic chemistry 2017-11, Vol.56 (22), p.14157-14163 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fabrication of metal–organic frameworks with controlled structure and desired properties is important but still a challenge. In this work, a zinc(II) framework, {[Zn3(L)2(DABCO)(H2O)]·9DMF} (named as Zn-1), has been synthesized based on [1,1′:3′,1″-terphenyl]-4,4″,5′-tricarboxylic acid (H3L) and 1,4-diazabicyclo[2.2.2]octane (DABCO), which is isostructural to the previously reported copper(II) analogue, {[Cu3(L)2(DABCO)(H2O)]·15H2O·9DMF} (named as Cu-1). Interestingly, hybrid zinc(II) and copper(II) bimetallic frameworks have been obtained via metal-ion metathesis and found to show enhanced adsorption and photoluminescence properties. Such a post-metal-ion metathesis method can be used to synthesize new and desired frameworks that could not be obtained by direct synthesis. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.7b02235 |