Loading…
Bioactive Asarone-Derived Phenylpropanoids from the Rhizome of Acorus tatarinowii Schott
Eight new (1a/1b, 2a, 3a, 4a/4b, and 5a/5b) and seven known (2b, 3b, and 6–10) asarone-derived phenylpropanoids, a known asarone-derived lignan (12), and four known lignan analogues (11 and 13–15) were isolated from the rhizome of Acorus tatarinowii Schott. The structures were elucidated via compreh...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2017-11, Vol.80 (11), p.2923-2929 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Eight new (1a/1b, 2a, 3a, 4a/4b, and 5a/5b) and seven known (2b, 3b, and 6–10) asarone-derived phenylpropanoids, a known asarone-derived lignan (12), and four known lignan analogues (11 and 13–15) were isolated from the rhizome of Acorus tatarinowii Schott. The structures were elucidated via comprehensive spectroscopic analyses, modified Mosher’s method, and quantum chemical calculations. Compounds 1–8 were present as enantiomers, and 1–5 were successfully resolved via chiral-phase HPLC. Compounds 1a/1b were the first cases of asarone-derived phenylpropanoids with an isopropyl C-3 side-chain tethered to a benzene core from nature. Hypoglycemic, antioxidant, and AChE inhibitory activities of 1–15 were assessed by the α-glucosidase inhibitory, ORAC, DPPH radical scavenging, and AChE inhibitory assays, respectively. All compounds except 3a showed α-glucosidase inhibitory activity. Compound 3b has the highest α-glucosidase inhibitory effect with an IC50 of 80.6 μM (positive drug acarbose IC50 of 442.4 μM). In the antioxidant assays, compounds 13–15 exhibited ORAC and DPPH radical scavenging activities. The results of the AChE inhibitory assay indicated that all compounds exhibited weak AChE inhibitory activities. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/acs.jnatprod.7b00457 |