Loading…

Identification of Single Adsorbed Cations on Mica–Liquid Interfaces by 3D Force Microscopy

Force microscope provides atomically resolved images of surfaces immersed in a liquid. The presence of different chemical species in the interface (cations, anions, water, neutral atoms) complicates the adscription of the observed features to a given species. We develop a 3D atomic force microscopy...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2017-12, Vol.8 (23), p.5707-5711
Main Authors: Martin-Jimenez, Daniel, Garcia, Ricardo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Force microscope provides atomically resolved images of surfaces immersed in a liquid. The presence of different chemical species in the interface (cations, anions, water, neutral atoms) complicates the adscription of the observed features to a given species. We develop a 3D atomic force microscopy method to identify the cations adsorbed on a mica surface from a potassium chloride solution. The method is based on measuring the peak value of the attractive force within the Stern layer. The maximum of the attractive force shows site-specific variations. The positions with the highest attractive force values are associated with the presence of adsorbed potassium ions, while the other positions are associated with a local depletion of the hydration layer. This criterion provides a surface coverage of K cations that is consistent with the one reported by other techniques.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.7b02671