Loading…

Validation of a Salmonella loop-mediated isothermal amplification assay in animal food

Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food microbiology 2018-01, Vol.264, p.63-76
Main Authors: Domesle, Kelly J., Yang, Qianru, Hammack, Thomas S., Ge, Beilei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. •LAMP assays on turbidity and fluorescence platforms were validated in animal food.•Well-established microbiological method validation guidelines were followed.•Both Salmonella LAMP assays were rapid, specific, and sensitive.•The assays performed comparably to a reference method in six animal food items.•The LAMP assays hold great promise for routine Salmonella screening in animal food.
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2017.10.020