Loading…
Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method
The focus of cognitive diagnosis (CD) is on evaluating an examinee’s strengths and weaknesses in terms of cognitive skills learned and skills that need study. Current methods for fitting CD models (CDMs) work well for large-scale assessments, where the data of hundreds or thousands of examinees are...
Saved in:
Published in: | Psychometrika 2018-06, Vol.83 (2), p.355-375 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The focus of cognitive diagnosis (CD) is on evaluating an examinee’s strengths and weaknesses in terms of cognitive skills learned and skills that need study. Current methods for fitting CD models (CDMs) work well for large-scale assessments, where the data of hundreds or thousands of examinees are available. However, the development of CD-based assessment tools that can be used in small-scale test settings, say, for monitoring the instruction and learning process at the classroom level has not kept up with the rapid pace at which research and development proceeded for large-scale assessments. The main reason is that the sample sizes of the small-scale test settings are simply too small to guarantee the reliable estimation of item parameters and examinees’ proficiency class membership. In this article, a general nonparametric classification (GNPC) method that allows for assigning examinees to the correct proficiency classes with a high rate when sample sizes are at the classroom level is proposed as an extension of the nonparametric classification (NPC) method (Chiu and Douglas in J Classif 30:225–250,
2013
). The proposed method remedies the shortcomings of the NPC method and can accommodate any CDM. The theoretical justification and the empirical studies are presented based on the saturated general CDMs, supporting the legitimacy of using the GNPC method with any CDM. The results from the simulation studies and real data analysis show that the GNPC method outperforms the general CDMs when samples are small. |
---|---|
ISSN: | 0033-3123 1860-0980 |
DOI: | 10.1007/s11336-017-9595-4 |