Loading…

Slow Passage Through a Hopf Bifurcation in Excitable Nerve Cables: Spatial Delays and Spatial Memory Effects

It is well established that in problems featuring slow passage through a Hopf bifurcation (dynamic Hopf bifurcation) the transition to large-amplitude oscillations may not occur until the slowly changing parameter considerably exceeds the value predicted from the static Hopf bifurcation analysis (te...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2018, Vol.80 (1), p.130-150
Main Authors: Bilinsky, L. M., Baer, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well established that in problems featuring slow passage through a Hopf bifurcation (dynamic Hopf bifurcation) the transition to large-amplitude oscillations may not occur until the slowly changing parameter considerably exceeds the value predicted from the static Hopf bifurcation analysis (temporal delay effect), with the length of the delay depending upon the initial value of the slowly changing parameter (temporal memory effect). In this paper we introduce new delay and memory effect phenomena using both analytic (WKB method) and numerical methods. We present a reaction–diffusion system for which slowly ramping a stimulus parameter (injected current) through a Hopf bifurcation elicits large-amplitude oscillations confined to a location a significant distance from the injection site (spatial delay effect). Furthermore, if the initial current value changes, this location may change (spatial memory effect). Our reaction–diffusion system is Baer and Rinzel’s continuum model of a spiny dendritic cable; this system consists of a passive dendritic cable weakly coupled to excitable dendritic spines. We compare results for this system with those for nerve cable models in which there is stronger coupling between the reactive and diffusive portions of the system. Finally, we show mathematically that Hodgkin and Huxley were correct in their assertion that for a sufficiently slow current ramp and a sufficiently large cable length, no value of injected current would cause their model of an excitable cable to fire; we call this phenomenon “complete accommodation.”
ISSN:0092-8240
1522-9602
DOI:10.1007/s11538-017-0366-2