Loading…

Unusual features of the large linear plasmid pSA3239 from Streptomyces aureofaciens CCM 3239

We previously identified the aur1 gene cluster, responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Pulse-field gel electrophoresis showed a single, 241kb linear plasmid, pSA3239, in this strain, and several approaches confirmed the presence of...

Full description

Saved in:
Bibliographic Details
Published in:Gene 2018-02, Vol.642, p.313-323
Main Authors: Mingyar, Erik, Novakova, Renata, Knirschova, Renata, Feckova, Lubomira, Bekeova, Carmen, Kormanec, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously identified the aur1 gene cluster, responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Pulse-field gel electrophoresis showed a single, 241kb linear plasmid, pSA3239, in this strain, and several approaches confirmed the presence of the aur1 cluster in this plasmid. We report here the nucleotide sequence of this 241,076-bp plasmid. pSA3239 contains an unprecedentedly small (13bp) telomeric sequence CCCGCGGAGCGGG, which is identical to the conserved Palindrome I sequence involved in the priming of end-patching replication. A bioinformatics analysis revealed 234 open reading frames with high number (28) of regulatory genes from various families. In contrast to most other linear plasmids, pSA3239 contains a pair of replication initiation genes (sa76 and sa75) located at its extreme left end, adjacent to the telomere. Together with similar proteins from several other linear plasmids (pFRL2, pSLA2-M, pSV2, pSDA1, and SAP1), they constitute a new family of replication initiation proteins. This left end also contains two genes, tpgSa and tapSa, encoding the terminal protein and the telomere associated-protein involved in telomere end-patching replication. pSA3239 also contains two genes homologous to the parAB partitioning system, and deletion of the parA homologue (sa43) affects structural stability of the plasmid. pSA3239 carries five potential secondary metabolite gene clusters. In addition to aur1 and a non-ribosomal peptide synthase (NRPS) gene cluster for the blue pigment indigoidine, it also contains a partial type II polyketide synthase (PKS) gene cluster, a partial type I PKS gene cluster, and a NRPS/PKSI gene cluster for unknown secondary metabolites. The last gene cluster contains a subcluster of seven genes (sa91–sa97), highly similar to part of the valanimycin biosynthetic cluster vlm. A S. aureofaciens strain lacking pSA3239 was prepared. This deletion did not substantially affect growth and differentiation. A comparative analysis of secondary metabolites between both strains did not identify any product, except auricin and indigoidine, which is dependent upon pSA3239. Thus, the other three identified gene clusters are likely silent under these conditions. •The large linear plasmid pSA3239 contains five secondary metabolite gene clusters.•pSA3239 has an unprecedentedly small (13bp) telomeric sequence.•pSA3239 contains two replication genes at its end, forming part of a new family.•p
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2017.11.046