Loading…
Environmental problems and geological implications derived from evaporite dissolution in the Barbastro salt anticline (NE Spain)
The halite-bearing Barbastro Formation crops out in the core of the Barbastro Anticline (Ebro Tertiary Basin). This anticline is traversed perpendicularly by some of the most important Pyrenean drainages such as the Cinca and Noguera-Ribagorzana Rivers. The terrace sequences of these fluvial systems...
Saved in:
Published in: | Environmental earth sciences 2008, Vol.53 (5), p.1045-1055 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The halite-bearing Barbastro Formation crops out in the core of the Barbastro Anticline (Ebro Tertiary Basin). This anticline is traversed perpendicularly by some of the most important Pyrenean drainages such as the Cinca and Noguera-Ribagorzana Rivers. The terrace sequences of these fluvial systems have been used as markers to identify and assess dissolution-induced subsidence and salt tectonics. In the limbs of the anticline, terrace deposits underlain by detrital bedrock do not show any evidence of deformation and have a consistent thickness of less than 10 m. The deposits of certain terrace levels of the Noguera-Ribagorzana River and its tributary, the Lo Reguer Creek, are locally thickened filling basins generated by dissolution-induced synsedimentary subsidence up to several kilometers long and more than 100 m deep. Conversely, terraces of the Cinca River do not show anomalously high thicknesses, but local uplifts related to differential upward flow of the halite-bearing bedrock. Locally, a minimum uplift rate of 0.3 mm/year has been estimated from a 64-ka terrace tilted away from the valley. The subsidence hazards occur chiefly in areas where the ground receives artificial water recharge. Serviceability of some canals has been notoriously affected by evaporite karstification. The problem has been mitigated to acceptable levels by grouting. Numerous buildings of Ivars de Noguera are severely damaged by dissolution subsidence, and possibly, by hydrocompaction of gypsiferous silts. The pipe network has been replaced to ameliorate the subsidence risk. In the Cinca River valley, cavities with a total volume of about 180,500 m³ have been created by solution mining at depths greater than 500 m. No investigation methods are applied in the brine field to monitor the distribution and evolution of artificial voids. Substantial increase in salinity of the Cinca River is another evidence of subjacent evaporite dissolution. |
---|---|
ISSN: | 0943-0105 1866-6280 1432-0495 1866-6299 |
DOI: | 10.1007/s00254-007-0731-9 |