Loading…
Inactivation of NF-κB by proteasome inhibition contributes to increased apoptosis induced by histone deacetylase inhibitors in human breast cancer cells
Histone deacetylase inhibitors (HDACi) are a new class of anticancer agents that cause growth arrest, differentiation and/or apoptosis in many tumor cells. As acetylation regulates the activity of the anti-apoptotic transcription factor NF-κB, we investigated whether the proteasome inhibitor MG-132...
Saved in:
Published in: | Breast cancer research and treatment 2008-11, Vol.112 (1), p.53-62 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Histone deacetylase inhibitors (HDACi) are a new class of anticancer agents that cause growth arrest, differentiation and/or apoptosis in many tumor cells. As acetylation regulates the activity of the anti-apoptotic transcription factor NF-κB, we investigated whether the proteasome inhibitor MG-132 would inhibit NF-κB activation and as a consequence potentiate HDACi-dependent apoptosis in breast cancer cells. We observed that the HDACi suberoylanilide hydroxamic acid (SAHA) or trichostatin A (TSA) induced cell death but also enhanced NF-κB-activity. This increase of NF-κB activity was strongly reduced by the addition of MG-132. Moreover, MG-132 potentiates the HDACi-induced cell death that was associated with caspase-3 activation, and PARP cleavage. Induction of the stress related kinases JNK and p38 and the up-regulation of p21 and p27 were also observed after co-treatment of cells with HDACi and MG-132. Disruption of the NF-κB pathway by BAY 11-7085 or IκB-SR mimicked the action of MG-132 in promoting HDACi-induced cell death. Thus, the combined treatment with HDACi and proteasome inhibitors potentiates apoptosis in breast cancer cells representing a novel strategy for breast cancer therapy. |
---|---|
ISSN: | 0167-6806 1573-7217 |
DOI: | 10.1007/s10549-007-9837-8 |