Loading…
Complementary Strategies for Directed C(sp3)−H Functionalization: A Comparison of Transition‐Metal‐Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer
The functionalization of C(sp3)−H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C−H functionalization have led to its wider adoption across a range of re...
Saved in:
Published in: | Angewandte Chemie International Edition 2018-01, Vol.57 (1), p.62-101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The functionalization of C(sp3)−H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C−H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C−H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)−H bonds. For each strategy, the scope, the reactivity of different C−H bonds, the position of the reacting C−H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C−H functionalization reactions and inspire future research in this area.
The targeted functionalization of C(sp3)−H bonds streamlines chemical synthesis and allows the use of simple starting materials. This Review discusses the strength and weakness of the three main approaches: transition‐metal‐catalyzed C−H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201703743 |