Loading…

An exceptional Devonian fish from Australia sheds light on tetrapod origins

The transition from fishes to tetrapods was one of the most dramatic events in the evolution of vertebrates, but many pivotal fossils are incomplete, resulting in gaps in the data that are used for phylogenetic reconstruction. Here we present new observations from the most complete, acid-prepared De...

Full description

Saved in:
Bibliographic Details
Published in:Nature 2006-11, Vol.444 (7116), p.199-202
Main Authors: Long, John A, Young, Gavin C, Holland, Tim, Senden, Tim J, Fitzgerald, Erich M. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transition from fishes to tetrapods was one of the most dramatic events in the evolution of vertebrates, but many pivotal fossils are incomplete, resulting in gaps in the data that are used for phylogenetic reconstruction. Here we present new observations from the most complete, acid-prepared Devonian tetrapodomorph fish yet discovered, Gogonasus, which was previously placed just crownward of Kenichthys and rhizodontids, the most primitive taxa on the tetrapod lineage. Unexpectedly, Gogonasus shows a mosaic of plesiomorphic and derived tetrapod-like features. Whereas the braincase and dermal cranial skeleton exhibit generalized morphologies with respect to Eusthenopteron or Panderichthys, taxa that are traditionally considered to be phyletically close to tetrapods, the presence of a deeply invaginated, wide spiracle, advanced internal spiracular architecture and near-horizontal hyomandibula are specialized features that are absent from Eusthenopteron. Furthermore, the pectoral fin skeleton of Gogonasus shares several features with that of Tiktaalik, the most tetrapod-like fish. A new phylogenetic analysis places Gogonasus crownward of Eusthenopteron as the sister taxon to the Elpistostegalia. Aspects of the basic tetrapod limb skeleton and middle ear architecture can now be traced further back within the tetrapodomorph radiation.
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature05243