Loading…

Peroxisome Proliferator-activated Receptor-γ Co-activator 1α-mediated Metabolic Remodeling of Skeletal Myocytes Mimics Exercise Training and Reverses Lipid-induced Mitochondrial Inefficiency

Peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1α activity and coincident impairments in mitochondrial performan...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-09, Vol.280 (39), p.33588-33598
Main Authors: Koves, Timothy R., Li, Ping, An, Jie, Akimoto, Takayuki, Slentz, Dorothy, Ilkayeva, Olga, Dohm, G. Lynis, Yan, Zhen, Newgard, Christopher B., Muoio, Deborah M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1α activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of β-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1α. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1α expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1α, provokes a disconnect between mitochondrial β-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1α overexpression favored a shift from incomplete to complete β-oxidation. We proposed that PGC1α enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M507621200