Loading…
Hydrogeochemistry of the Saloum (Senegal) superficial coastal aquifer
Seawater has entered and concentrated in the Saloum hydrologic system up to 100 km upstream, contaminating both the surface water and the superficial 'Continental terminal' (CT) groundwater resources, and large proportions of cultivated lands. In the areas affected by saltwater contaminati...
Saved in:
Published in: | Environmental earth sciences 2003-06, Vol.44 (2), p.127-136 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seawater has entered and concentrated in the Saloum hydrologic system up to 100 km upstream, contaminating both the surface water and the superficial 'Continental terminal' (CT) groundwater resources, and large proportions of cultivated lands. In the areas affected by saltwater contamination, chloride concentrations as high as 3,195 mg/l have been measured in the groundwater samples collected from wells located in the vicinity of the Saloum River, making the water inadequate for drinking water purposes. This paper presents the results of a study designed to characterise the current extent of the saline groundwater and the mechanism of saline surface water body/fresh groundwater mixing in relation to the groundwater flow trends. It also describes the groundwater chemical and isotopic composition and geochemical processes controlling the chemical patterns. Four major water types occur in the study area, namely Na-rich saline groundwater, Ca-Na-rich saline groundwater, Na-dominant fresh groundwater and Ca-dominant fresh groundwater. A hydrogeochemical zonation of the aquifer, based on the presence of different water families and on the groundwater flow, led to the identification of the main processes controlling the groundwater chemistry. Cation exchange reactions on the kaolinite clay mineral, calcite dissolution in the eastern zone where calcite minerals have been identified, reverse cation exchange reactions in the saline-contaminated band along the Saloum River and, to a lesser extent, a gypsum dissolution are the predominant processes. Results of δ^sup 18^O and δD analysis in 15 groundwater samples compared with the local meteoric line indicate that the groundwater has been affected by evaporation, and the groundwater is isotopically lighter as the depth of water table increases. In this study, δ^sup 18^O data were used in conjunction with chloride data to identify the source of high chloride. Results show a departure of the contaminated water samples from the seawater mixing line, which indicates that other processes rather than mixing between modern seawater and native groundwater alone increase the chloride concentrations.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0943-0105 1866-6280 1432-0495 1866-6299 |
DOI: | 10.1007/s00254-002-0749-y |