Loading…

Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense-phase carbon dioxide

Dense-phase carbon dioxide (CO2) treatments in a continuous flow through system were applied to apple cider to inactivate Escherichia coli (ATCC 4157). A response surface design with factors of the CO2/product ratio (0, 70, and 140 g/kg), temperature (25, 35, and 45 degrees C), and pressure (6.9, 27...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food protection 2006, Vol.69 (1), p.12-16
Main Authors: Gunes, G, Blum, L.K, Hotchkiss, J.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dense-phase carbon dioxide (CO2) treatments in a continuous flow through system were applied to apple cider to inactivate Escherichia coli (ATCC 4157). A response surface design with factors of the CO2/product ratio (0, 70, and 140 g/kg), temperature (25, 35, and 45 degrees C), and pressure (6.9, 27.6, and 48.3 MPa) were used. E. coli was very sensitive to dense CO2 treatment, with a more than 6-log reduction in treatments containing 70 and 140 g/kg CO2, irrespective of temperature and pressure. The CO2/product ratio was the most important factor affecting inactivation rate of E. coli. No effect of temperature and pressure was detected because of high sensitivity of the cells to dense CO2. Dense CO2 could be an alternative pasteurization treatment for apple cider. Further studies dealing with the organoleptic quality of the product are needed.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028x-69.1.12