Loading…
Electrostatic Self-Assembly: Understanding the Significance of the Solvent
The electrostatic deposition of particles has become a very effective route to the assembly of many nanoscale materials. However, fundamental limitations to the process are presented by the choice of solvent, which can either suppress or promote self-assembly depending on specific combinations of na...
Saved in:
Published in: | Journal of chemical theory and computation 2018-02, Vol.14 (2), p.905-915 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electrostatic deposition of particles has become a very effective route to the assembly of many nanoscale materials. However, fundamental limitations to the process are presented by the choice of solvent, which can either suppress or promote self-assembly depending on specific combinations of nanoparticle/surface/solvent properties. A new development in the theory of electrostatic interactions between polarizable objects provides insight into the effect a solvent can have on electrostatic self-assembly. Critical to assembly is the requirement for a minimum charge on a surface of an object, below which a solvent can suppress electrostatic attraction. Examples drawn from the literature are used to illustrate how switches in behavior are mediated by the solvent; these in turn provide a fundamental understanding of electrostatic particle-surface interactions applicable to many areas of materials science and nanotechnology. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.7b00647 |