Loading…

Cellularity of Thymic Epithelial Cells in the Postnatal Mouse

The molecular and cellular biology of thymic epithelial cells (TECs) often relies on the analysis of TECs isolated in enzymatically digested single-cell suspensions derived from mouse thymus. Many independent studies have reported that the estimated cellularity of total TECs isolated from one adult...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2018-02, Vol.200 (4), p.1382-1388
Main Authors: Sakata, Mie, Ohigashi, Izumi, Takahama, Yousuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The molecular and cellular biology of thymic epithelial cells (TECs) often relies on the analysis of TECs isolated in enzymatically digested single-cell suspensions derived from mouse thymus. Many independent studies have reported that the estimated cellularity of total TECs isolated from one adult mouse is on the order of up to 10 However, these numbers appear extremely small given that the cellularity of total thymocytes exceeds 10 and that TECs play multiple roles in thymocyte development and repertoire formation. In the present study, we aimed to measure the numbers of β5t-expressing cortical TECs and Aire-expressing medullary TECs in postnatal mouse thymus in situ without enzymatic digestion. The numbers of these TECs were manually counted in individual thymic sections and were three-dimensionally summed throughout the entire thymic lobes. The results show that the cellularity of total TECs in one 5-wk-old female mouse exceeds 10 , containing ∼9 × 10 β5t cortical TECs and ∼1.1 × 10 Aire medullary TECs. These results suggest that the use of conventional enzymatic digestion methods for the isolation of TECs may have resulted in the underestimation of the cellularity, and possibly the biology, of TECs.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1701235