Loading…

Unusual Stability of a Recombinant Verrucomicrobium spinosum Tyrosinase to Denaturing Agents and Its Use for a Production of a Protein with Adhesive Properties

Tyrosinases catalyze oxidation of phenols with a formation of biphenols, quinones, and highly polymerized melanins. Tyrosinases have prospects for industrial use to remove phenols, also in biosensors, in bioorganic synthesis, and for a production of biocompatible adhesives (medical glues). Despite g...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2018-07, Vol.185 (3), p.736-754
Main Authors: Axambayeva, A. S., Zhaparova, L. R., Shagyrova, Zh. S., Ramankulov, E. M., Shustov, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tyrosinases catalyze oxidation of phenols with a formation of biphenols, quinones, and highly polymerized melanins. Tyrosinases have prospects for industrial use to remove phenols, also in biosensors, in bioorganic synthesis, and for a production of biocompatible adhesives (medical glues). Despite growing fields of potential applications, a selection of commercially available tyrosinases are currently limited to a single enzyme which is isolated from fruiting bodies of mushrooms. This article describes a preparation of recombinant tyrosinase from a bacterium Verrucomicrobium spinosum using a heterologous expression in Escherichia coli . Recombinant V. spinosum tyrosinase has high specific activity (13,200 U/mg). A resistance of the enzyme was investigated to chemical agents used to denature proteins and keep poorly solvable proteins in a solution. The enzyme preserves activity in the presence of urea and retains at least a fraction of its enzymatic activity at concentrations of urea up to 4.5 M. An addition of sodium lauroyl sarcosinate to 1 or 2% activates the tyrosinase. Novel means of quantitatively expressing tyrosinase activity is described in this article. The method uses a set of parameters obtained from non-linear estimation of the progress curves and is suitable for enzymatic reactions which do not comply with Michaelis–Menten kinetics. Tyrosinase may be used to introduce into proteins a post-translational modification which is a conversion of tyrosine residues (Tyr) into residues of 3,4-dioxyphenylalanine (DOPA). The presence of DOPA provides the polypeptides with a capability of strong molecular adhesion. Co-expression of tyrosinase and a recombinant protein mimicking marine mussel-encoded adhesive proteins resulted in obtaining of the protein in which at least a part of Tyr residues had been converted to DOPA. The DOPA-containing protein had high adhesion strength (2.5 MPa).
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-017-2686-y