Loading…
Robust Object Co-Segmentation Using Background Prior
Given a set of images that contain objects from a common category, object co-segmentation aims at automatically discovering and segmenting such common objects from each image. During the past few years, object co-segmentation has received great attention in the computer vision community. However, th...
Saved in:
Published in: | IEEE transactions on image processing 2018-04, Vol.27 (4), p.1639-1651 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a set of images that contain objects from a common category, object co-segmentation aims at automatically discovering and segmenting such common objects from each image. During the past few years, object co-segmentation has received great attention in the computer vision community. However, the existing approaches are usually designed with misleading assumptions, unscalable priors, or subjective computational models, which do not have sufficient robustness for dealing with complex and unconstrained real-world image contents. This paper proposes a novel two-stage co-segmentation framework, mainly for addressing the robustness issue. In the proposed framework, we first introduce the concept of union background and use it to improve the robustness for suppressing the image backgrounds contained by the given image groups. Then, we also weaken the requirement for the strong prior knowledge by using the background prior instead. This can improve the robustness when scaling up for the unconstrained image contents. Based on the weak background prior, we propose a novel MR-SGS model, i.e., manifold ranking with the self-learned graph structure, which can infer suitable graph structures in a data-driven manner rather than building the fixed graph structure relying on the subjective design. Such capacity is critical for further improving the robustness in inferring the foreground/background probability of each image pixel. Comprehensive experiments and comparisons with other state-of-the-art approaches can demonstrate the effectiveness of the proposed work. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2017.2781424 |