Loading…

Detection of nonstationary transition to synchronized states of a neural network using recurrence analyses

We study the stability of asymptotic states displayed by a complex neural network. We focus on the loss of stability of a stationary state of networks using recurrence quantifiers as tools to diagnose local and global stabilities as well as the multistability of a coupled neural network. Numerical s...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2017-07, Vol.96 (1-1), p.012320-012320, Article 012320
Main Authors: Budzinski, R C, Boaretto, B R R, Prado, T L, Lopes, S R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the stability of asymptotic states displayed by a complex neural network. We focus on the loss of stability of a stationary state of networks using recurrence quantifiers as tools to diagnose local and global stabilities as well as the multistability of a coupled neural network. Numerical simulations of a neural network composed of 1024 neurons in a small-world connection scheme are performed using the model of Braun et al. [Int. J. Bifurcation Chaos 08, 881 (1998)IJBEE40218-127410.1142/S0218127498000681], which is a modified model from the Hodgkin-Huxley model [J. Phys. 117, 500 (1952)]. To validate the analyses, the results are compared with those produced by Kuramoto's order parameter [Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin Heidelberg, 1984)]. We show that recurrence tools making use of just integrated signals provided by the networks, such as local field potential (LFP) (LFP signals) or mean field values bring new results on the understanding of neural behavior occurring before the synchronization states. In particular we show the occurrence of different stationary and nonstationarity asymptotic states.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.96.012320