Loading…
Reversible Dihydrogen Activation and Hydride Transfer by a Uranium Nitride Complex
Cleavage of dihydrogen is an important step in the industrial and enzymatic transformation of N2 into ammonia. The reversible cleavage of dihydrogen was achieved under mild conditions (room temperature and 1 atmosphere of H2) by the molecular uranium nitride complex, [Cs{U(OSi(OtBu)3)3}2(μ‐N)] 1, le...
Saved in:
Published in: | Angewandte Chemie International Edition 2018-03, Vol.57 (14), p.3697-3700 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cleavage of dihydrogen is an important step in the industrial and enzymatic transformation of N2 into ammonia. The reversible cleavage of dihydrogen was achieved under mild conditions (room temperature and 1 atmosphere of H2) by the molecular uranium nitride complex, [Cs{U(OSi(OtBu)3)3}2(μ‐N)] 1, leading to a rare hydride–imide bridged diuranium(IV) complex, [Cs{U(OSi(OtBu)3)3}2(μ‐H)(μ‐NH)], 2 that slowly releases H2 under vacuum. This complex is highly reactive and quickly transfers hydride to acetonitrile and carbon dioxide at room temperature, affording the ketimide‐ and formate‐bridged UIV species [Cs{U(OSi(OtBu)3)3}2(μ‐NH)(μ‐CH3CHN)], 3 and [Cs{U(OSi(OtBu)3)3}2(μ‐HCOO)(μ‐NHCOO)], 4.
Breaking and building: A rare uranium hydride complex is formed by cooperative dihydrogen cleavage by a uranium nitride. Hydride addition to small molecules, such as carbon dioxide, is facilitated. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201800203 |