Loading…
Electrochemical Immunosensor for Cholera Toxin Using Liposomes and Poly(3,4-ethylenedioxythiophene)-Coated Carbon Nanotubes
A sensitive method for the detection of cholera toxin (CT) using an electrochemical immunosensor with liposomic magnification followed by adsorptive square-wave stripping voltammetry is described. Potassium ferrocyanide-encapsulated and ganglioside (GM1)-functionalized liposomes act as highly specif...
Saved in:
Published in: | Analytical chemistry (Washington) 2006-02, Vol.78 (4), p.1115-1121 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A sensitive method for the detection of cholera toxin (CT) using an electrochemical immunosensor with liposomic magnification followed by adsorptive square-wave stripping voltammetry is described. Potassium ferrocyanide-encapsulated and ganglioside (GM1)-functionalized liposomes act as highly specific recognition labels for the amplified detection of cholera toxin. The sensing interface consists of monoclonal antibody against the B subunit of CT that is linked to poly(3,4-ethylenedioxythiophene) coated on Nafion-supported multiwalled carbon nanotube caste film on a glassy carbon electrode. The CT is detected by a “sandwich-type” assay on the electronic transducers, where the toxin is first bound to the anti-CT antibody and then to the GM1-functionalized liposome. The potassium ferrocyanide molecules are released from the bounded liposomes on the electrode by lyses with methanolic solution of Triton X-100. The released electroactive marker is measured by adsorptive square-wave stripping voltammetry. The sandwich assay provides the amplification route for the detection of the CT present in ultratrace levels. The calibration curve for CT had a linear range of 10-14−10-7g mL-1. The detection limit of this immunosensor was 10-16 g of cholera toxin (equivalent to 100 μL of 10-15 g mL-1). |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac051435d |