Loading…
Metabolic Profiling Reveals a Contribution of Gut Microbiota to Fatty Liver Phenotype in Insulin-Resistant Mice
Here, we study the intricate relationship between gut microbiota and host cometabolic phenotypes associated with dietary-induced impaired glucose homeostasis and nonalcoholic fatty liver disease (NAFLD) in a mouse strain (12956) known to be susceptible to these disease traits, using plasma and urine...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-08, Vol.103 (33), p.12511-12516 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we study the intricate relationship between gut microbiota and host cometabolic phenotypes associated with dietary-induced impaired glucose homeostasis and nonalcoholic fatty liver disease (NAFLD) in a mouse strain (12956) known to be susceptible to these disease traits, using plasma and urine metabotyping, achieved by 1H NMR spectroscopy. Multivariate statistical modeling of the spectra shows that the genetic predisposition of the 12956 mouse to impaired glucose homeostasis and NAFLD is associated with disruptions of choline metabolism, i.e., low circulating levels of plasma phosphatidylcholine and high urinary excretion of methylamines (dimethylamine, trimethylamine, and trimethylamine-Noxide), coprocessed by symbiotic gut microbiota and mammalian enzyme systems. Conversion of choline into methylamines by microbiota in strain 12956 on a high-fat diet reduces the bioavailability of choline and mimics the effect of choline-deficient diets, causing NAFLD. These data also indicate that gut microbiota may play an active role in the development of insulin resistance. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0601056103 |