Loading…

Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 g...

Full description

Saved in:
Bibliographic Details
Published in:Applied geochemistry 2005-02, Vol.20 (2), p.423-441
Main Authors: Seiler, Ralph L., Stollenwerk, Kenneth G., Garbarino, John R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water sources in the area ranged from 0.27 to 742 μg/l. Ground water in which W concentrations exceed 50 μg/l principally occurs SE of Fallon in a geothermal area. The principal sources of W in ground water are natural and include erosion of W-bearing mineral deposits in the Carson River watershed upstream of Fallon, and, possibly, upwelling geothermal waters. Ground water in the Fallon area is strongly reducing and reductive dissolution of Fe and Mn oxyhydroxides may be releasing W; however, direct evidence that the metal oxides contain W is not available. Although W and Cl concentrations in the Carson River, a lake, and water from many wells, appear to be controlled by evaporative concentration, evaporation alone cannot explain the elevated W concentrations found in water from some of the wells. Concentrations of W exceeding 50 μg/l are exclusively associated with Na – HCO 3 and Na–Cl water types and pH > 8.0; in these waters, geochemical modeling indicates that W exhibits
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2004.09.002