Loading…

Corticospinal excitability is modulated by distinct movement patterns during action observation

It is well established that excitability of the primary motor cortex increases during action observation. However, the modulation of motor cortex excitability during observation of different actions, with distinct movement patterns, is not fully understood. The aim of the current study was to examin...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2018-04, Vol.236 (4), p.1067-1075
Main Authors: Huntley, M. K., Muller, S., Vallence, Ann-Maree
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well established that excitability of the primary motor cortex increases during action observation. However, the modulation of motor cortex excitability during observation of different actions, with distinct movement patterns, is not fully understood. The aim of the current study was to examine time-dependent changes in corticospinal excitability during observation of two actions with different levels of complexity. We developed videos of two distinct actions (a point and a reach-and-grasp), that were matched in video length, action onset, and onset of kinematics. Single-pulse transcranial magnetic stimulation was used to investigate time-dependent changes in primary motor cortex excitability during observation of the two actions. Motor evoked potentials (MEP) were recorded from two intrinsic hand muscles, namely first dorsal interosseous (FDI) and abductor digiti minimi. Results showed no difference in MEP amplitude during observation of a static hand compared to observation of the actions. When comparing the point to the grasp action, there were two key findings showing time-dependent changes in motor cortex excitability: first, greater MEP amplitude in FDI during observation of the point than the grasp action at an early time-point (index finger extension) and second, greater MEP amplitude in FDI during observation of the grasp than the point action at a later time-point (hand opening to form a grasp). These results show that excitability of the primary motor cortex is differentially modulated during observation of a point and grasp action, suggesting that the action observation network is engaged in a time-dependent manner during action observation.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-018-5199-1