Loading…

Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells

Dendritic cells (DCs) have important pathogenic role in the induction and progression of ulcerative colitis (UC), but their role in mesenchymal stem cells (MSCs)-mediated suppression of colon injury and inflammation is not revealed. By using dextran sodium sulfate (DSS)-induced colitis, a well-estab...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2018-04, Vol.100, p.426-432
Main Authors: Nikolic, Aleksandar, Simovic Markovic, Bojana, Gazdic, Marina, Randall Harrell, C., Fellabaum, Crissy, Jovicic, Nemanja, Djonov, Valentin, Arsenijevic, Nebojsa, L Lukic, Miodrag, Stojkovic, Miodrag, Volarevic, Vladislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dendritic cells (DCs) have important pathogenic role in the induction and progression of ulcerative colitis (UC), but their role in mesenchymal stem cells (MSCs)-mediated suppression of colon injury and inflammation is not revealed. By using dextran sodium sulfate (DSS)-induced colitis, a well-established murine model of UC, we examined effects of MSCs on phenotype and function of colon infiltrating DCs. Clinical, histological, immunophenotypic analysis and passive transfer of MSCs-primed DCs were used to evaluate capacity of MSC to suppress inflammatory phenotype of DCs in vivo. Additionally, DCs:MSCs interplay was also investigated in vitro, to confirmed in vivo obtained findings. Intraperitoneally administered MSCs (2 × 106) significantly reduced progression of DSS-induced colitis and reduced serum levels of inflammatory cytokines (IL-1β, IL-12, and IL-6). Passive transfer of in vivo MSCs-primed DCs reduced severity of colitis while passive transfer of MSCs-non-primed DCs aggravated DSS-induced colitis. Through the secretion of immunomodulatory Galectin 3, MSCs, in paracrine manner, down-regulated production of inflammatory cytokines in DCs and attenuated expression of co-stimulatory and major histocompatibility complex class II molecules on their membranes. Taken together, these results indicate that MSCs achieved their beneficial effects in DSS-induced colitis by suppressing inflammatory phenotype of DCs in Gal-3 dependent manner. Therapeutic targeting of DCs by MSCs should be explored in future studies as a useful approach for the treatment of UC.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2018.02.060