Loading…
Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure
For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape...
Saved in:
Published in: | Biological & pharmaceutical bulletin 2018/03/01, Vol.41(3), pp.288-293 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3 |
container_end_page | 293 |
container_issue | 3 |
container_start_page | 288 |
container_title | Biological & pharmaceutical bulletin |
container_volume | 41 |
creator | Takiguchi, Kingo Hayashi, Masahito Kazayama, Yuki Toyota, Taro Harada, Yoshie Nishiyama, Masayoshi |
description | For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea. |
doi_str_mv | 10.1248/bpb.b17-00366 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2009567123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241326329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EYsvCkSuKxIVLFnvsxs4RRbtdpF3BAbhatuu0qVw72Mmh_57JdikSF49G8-nN8xtC3jN6w0Coz3a0N5bJmlLeNC_IinEh6zWw9Uuyoi1TdcPW6oq8KeVAKZUU-GtyBa1oGVCxIvYx5XGfQtoNzoSqS3HKKVSprx4Hl9M02zn4-jY6M5Y5mGmIu2ozmDhVv3wZXPClsqeq25u4W0b3p21OZULOVd-zL2XO_i151ZtQ_Lvnek1-3t3-6O7rh2-br92Xh9qhq6kGJaA1QknrOPSCguStp15yxw13wvRu2zetkgoMduC8bDwYY2lr3LqRjl-TT2fdMaffsy-TPg7F-RBM9GkuGihtEWTAEf34H3pIc47oTgMIxqHh0CJVnykMopTsez3m4WjySTOql_A1hq8xfP0UPvIfnlVne_TbC_03bQQ2ZwCnS9wphiH6f7tdkXbAW6BVplBUMMqxgKagsEdLnHIp2fKB7qx0wLB3_rLK5Gk5ypMxwTRfnovBy9TtTdY-8j_sTa7b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241326329</pqid></control><display><type>article</type><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi</creator><creatorcontrib>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi ; cThe University of Tokyo Graduate School of Arts and Sciences ; and HAKUBI Center for Advanced Research ; and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS ; Kyoto University ; bStructural Biology Research Center ; aNagoya University Graduate School of Science ; Nagoya University</creatorcontrib><description>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</description><identifier>ISSN: 0918-6158</identifier><identifier>EISSN: 1347-5215</identifier><identifier>DOI: 10.1248/bpb.b17-00366</identifier><identifier>PMID: 29491204</identifier><language>eng</language><publisher>Japan: The Pharmaceutical Society of Japan</publisher><subject>Animals ; artificial cell model ; Artificial Cells ; Biological membranes ; Cell culture ; Coated Vesicles ; Cytoskeleton ; Cytoskeleton - chemistry ; Cytoskeleton - ultrastructure ; Deep sea ; Depolymerization ; Drug Carriers ; Drug Delivery Systems ; Drug development ; Encapsulation ; External pressure ; External stimuli ; giant liposome ; Hydrostatic Pressure ; Lipid Bilayers ; Lipids ; Liposomes ; Liposomes - chemistry ; Membranes ; microtubule ; Microtubules ; Microtubules - chemistry ; Molecular modelling ; Morphogenesis ; Morphology ; Osmotic Pressure ; Osmotic stress ; Particle Size ; Polymerization ; Pressure ; Swine ; Tubulin - chemistry ; vesicle ; Vesicles</subject><ispartof>Biological and Pharmaceutical Bulletin, 2018/03/01, Vol.41(3), pp.288-293</ispartof><rights>2018 The Pharmaceutical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29491204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takiguchi, Kingo</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><creatorcontrib>Kazayama, Yuki</creatorcontrib><creatorcontrib>Toyota, Taro</creatorcontrib><creatorcontrib>Harada, Yoshie</creatorcontrib><creatorcontrib>Nishiyama, Masayoshi</creatorcontrib><creatorcontrib>cThe University of Tokyo Graduate School of Arts and Sciences</creatorcontrib><creatorcontrib>and HAKUBI Center for Advanced Research</creatorcontrib><creatorcontrib>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</creatorcontrib><creatorcontrib>Kyoto University</creatorcontrib><creatorcontrib>bStructural Biology Research Center</creatorcontrib><creatorcontrib>aNagoya University Graduate School of Science</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><title>Biological & pharmaceutical bulletin</title><addtitle>Biol Pharm Bull</addtitle><description>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</description><subject>Animals</subject><subject>artificial cell model</subject><subject>Artificial Cells</subject><subject>Biological membranes</subject><subject>Cell culture</subject><subject>Coated Vesicles</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Deep sea</subject><subject>Depolymerization</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Drug development</subject><subject>Encapsulation</subject><subject>External pressure</subject><subject>External stimuli</subject><subject>giant liposome</subject><subject>Hydrostatic Pressure</subject><subject>Lipid Bilayers</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Membranes</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - chemistry</subject><subject>Molecular modelling</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Particle Size</subject><subject>Polymerization</subject><subject>Pressure</subject><subject>Swine</subject><subject>Tubulin - chemistry</subject><subject>vesicle</subject><subject>Vesicles</subject><issn>0918-6158</issn><issn>1347-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUGP0zAQhS0EYsvCkSuKxIVLFnvsxs4RRbtdpF3BAbhatuu0qVw72Mmh_57JdikSF49G8-nN8xtC3jN6w0Coz3a0N5bJmlLeNC_IinEh6zWw9Uuyoi1TdcPW6oq8KeVAKZUU-GtyBa1oGVCxIvYx5XGfQtoNzoSqS3HKKVSprx4Hl9M02zn4-jY6M5Y5mGmIu2ozmDhVv3wZXPClsqeq25u4W0b3p21OZULOVd-zL2XO_i151ZtQ_Lvnek1-3t3-6O7rh2-br92Xh9qhq6kGJaA1QknrOPSCguStp15yxw13wvRu2zetkgoMduC8bDwYY2lr3LqRjl-TT2fdMaffsy-TPg7F-RBM9GkuGihtEWTAEf34H3pIc47oTgMIxqHh0CJVnykMopTsez3m4WjySTOql_A1hq8xfP0UPvIfnlVne_TbC_03bQQ2ZwCnS9wphiH6f7tdkXbAW6BVplBUMMqxgKagsEdLnHIp2fKB7qx0wLB3_rLK5Gk5ypMxwTRfnovBy9TtTdY-8j_sTa7b</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Takiguchi, Kingo</creator><creator>Hayashi, Masahito</creator><creator>Kazayama, Yuki</creator><creator>Toyota, Taro</creator><creator>Harada, Yoshie</creator><creator>Nishiyama, Masayoshi</creator><general>The Pharmaceutical Society of Japan</general><general>Pharmaceutical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2018</creationdate><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><author>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>artificial cell model</topic><topic>Artificial Cells</topic><topic>Biological membranes</topic><topic>Cell culture</topic><topic>Coated Vesicles</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Deep sea</topic><topic>Depolymerization</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Drug development</topic><topic>Encapsulation</topic><topic>External pressure</topic><topic>External stimuli</topic><topic>giant liposome</topic><topic>Hydrostatic Pressure</topic><topic>Lipid Bilayers</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Membranes</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - chemistry</topic><topic>Molecular modelling</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Particle Size</topic><topic>Polymerization</topic><topic>Pressure</topic><topic>Swine</topic><topic>Tubulin - chemistry</topic><topic>vesicle</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takiguchi, Kingo</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><creatorcontrib>Kazayama, Yuki</creatorcontrib><creatorcontrib>Toyota, Taro</creatorcontrib><creatorcontrib>Harada, Yoshie</creatorcontrib><creatorcontrib>Nishiyama, Masayoshi</creatorcontrib><creatorcontrib>cThe University of Tokyo Graduate School of Arts and Sciences</creatorcontrib><creatorcontrib>and HAKUBI Center for Advanced Research</creatorcontrib><creatorcontrib>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</creatorcontrib><creatorcontrib>Kyoto University</creatorcontrib><creatorcontrib>bStructural Biology Research Center</creatorcontrib><creatorcontrib>aNagoya University Graduate School of Science</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biological & pharmaceutical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takiguchi, Kingo</au><au>Hayashi, Masahito</au><au>Kazayama, Yuki</au><au>Toyota, Taro</au><au>Harada, Yoshie</au><au>Nishiyama, Masayoshi</au><aucorp>cThe University of Tokyo Graduate School of Arts and Sciences</aucorp><aucorp>and HAKUBI Center for Advanced Research</aucorp><aucorp>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</aucorp><aucorp>Kyoto University</aucorp><aucorp>bStructural Biology Research Center</aucorp><aucorp>aNagoya University Graduate School of Science</aucorp><aucorp>Nagoya University</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</atitle><jtitle>Biological & pharmaceutical bulletin</jtitle><addtitle>Biol Pharm Bull</addtitle><date>2018</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>288</spage><epage>293</epage><pages>288-293</pages><issn>0918-6158</issn><eissn>1347-5215</eissn><abstract>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</abstract><cop>Japan</cop><pub>The Pharmaceutical Society of Japan</pub><pmid>29491204</pmid><doi>10.1248/bpb.b17-00366</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0918-6158 |
ispartof | Biological and Pharmaceutical Bulletin, 2018/03/01, Vol.41(3), pp.288-293 |
issn | 0918-6158 1347-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2009567123 |
source | Full-Text Journals in Chemistry (Open access) |
subjects | Animals artificial cell model Artificial Cells Biological membranes Cell culture Coated Vesicles Cytoskeleton Cytoskeleton - chemistry Cytoskeleton - ultrastructure Deep sea Depolymerization Drug Carriers Drug Delivery Systems Drug development Encapsulation External pressure External stimuli giant liposome Hydrostatic Pressure Lipid Bilayers Lipids Liposomes Liposomes - chemistry Membranes microtubule Microtubules Microtubules - chemistry Molecular modelling Morphogenesis Morphology Osmotic Pressure Osmotic stress Particle Size Polymerization Pressure Swine Tubulin - chemistry vesicle Vesicles |
title | Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20Control%20of%20Microtubule-Encapsulating%20Giant%20Vesicles%20by%20Changing%20Hydrostatic%20Pressure&rft.jtitle=Biological%20&%20pharmaceutical%20bulletin&rft.au=Takiguchi,%20Kingo&rft.aucorp=cThe%20University%20of%20Tokyo%20Graduate%20School%20of%20Arts%20and%20Sciences&rft.date=2018&rft.volume=41&rft.issue=3&rft.spage=288&rft.epage=293&rft.pages=288-293&rft.issn=0918-6158&rft.eissn=1347-5215&rft_id=info:doi/10.1248/bpb.b17-00366&rft_dat=%3Cproquest_cross%3E2241326329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2241326329&rft_id=info:pmid/29491204&rfr_iscdi=true |