Loading…

Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure

For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape...

Full description

Saved in:
Bibliographic Details
Published in:Biological & pharmaceutical bulletin 2018/03/01, Vol.41(3), pp.288-293
Main Authors: Takiguchi, Kingo, Hayashi, Masahito, Kazayama, Yuki, Toyota, Taro, Harada, Yoshie, Nishiyama, Masayoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3
container_end_page 293
container_issue 3
container_start_page 288
container_title Biological & pharmaceutical bulletin
container_volume 41
creator Takiguchi, Kingo
Hayashi, Masahito
Kazayama, Yuki
Toyota, Taro
Harada, Yoshie
Nishiyama, Masayoshi
description For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.
doi_str_mv 10.1248/bpb.b17-00366
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2009567123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241326329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EYsvCkSuKxIVLFnvsxs4RRbtdpF3BAbhatuu0qVw72Mmh_57JdikSF49G8-nN8xtC3jN6w0Coz3a0N5bJmlLeNC_IinEh6zWw9Uuyoi1TdcPW6oq8KeVAKZUU-GtyBa1oGVCxIvYx5XGfQtoNzoSqS3HKKVSprx4Hl9M02zn4-jY6M5Y5mGmIu2ozmDhVv3wZXPClsqeq25u4W0b3p21OZULOVd-zL2XO_i151ZtQ_Lvnek1-3t3-6O7rh2-br92Xh9qhq6kGJaA1QknrOPSCguStp15yxw13wvRu2zetkgoMduC8bDwYY2lr3LqRjl-TT2fdMaffsy-TPg7F-RBM9GkuGihtEWTAEf34H3pIc47oTgMIxqHh0CJVnykMopTsez3m4WjySTOql_A1hq8xfP0UPvIfnlVne_TbC_03bQQ2ZwCnS9wphiH6f7tdkXbAW6BVplBUMMqxgKagsEdLnHIp2fKB7qx0wLB3_rLK5Gk5ypMxwTRfnovBy9TtTdY-8j_sTa7b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241326329</pqid></control><display><type>article</type><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi</creator><creatorcontrib>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi ; cThe University of Tokyo Graduate School of Arts and Sciences ; and HAKUBI Center for Advanced Research ; and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS ; Kyoto University ; bStructural Biology Research Center ; aNagoya University Graduate School of Science ; Nagoya University</creatorcontrib><description>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</description><identifier>ISSN: 0918-6158</identifier><identifier>EISSN: 1347-5215</identifier><identifier>DOI: 10.1248/bpb.b17-00366</identifier><identifier>PMID: 29491204</identifier><language>eng</language><publisher>Japan: The Pharmaceutical Society of Japan</publisher><subject>Animals ; artificial cell model ; Artificial Cells ; Biological membranes ; Cell culture ; Coated Vesicles ; Cytoskeleton ; Cytoskeleton - chemistry ; Cytoskeleton - ultrastructure ; Deep sea ; Depolymerization ; Drug Carriers ; Drug Delivery Systems ; Drug development ; Encapsulation ; External pressure ; External stimuli ; giant liposome ; Hydrostatic Pressure ; Lipid Bilayers ; Lipids ; Liposomes ; Liposomes - chemistry ; Membranes ; microtubule ; Microtubules ; Microtubules - chemistry ; Molecular modelling ; Morphogenesis ; Morphology ; Osmotic Pressure ; Osmotic stress ; Particle Size ; Polymerization ; Pressure ; Swine ; Tubulin - chemistry ; vesicle ; Vesicles</subject><ispartof>Biological and Pharmaceutical Bulletin, 2018/03/01, Vol.41(3), pp.288-293</ispartof><rights>2018 The Pharmaceutical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29491204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takiguchi, Kingo</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><creatorcontrib>Kazayama, Yuki</creatorcontrib><creatorcontrib>Toyota, Taro</creatorcontrib><creatorcontrib>Harada, Yoshie</creatorcontrib><creatorcontrib>Nishiyama, Masayoshi</creatorcontrib><creatorcontrib>cThe University of Tokyo Graduate School of Arts and Sciences</creatorcontrib><creatorcontrib>and HAKUBI Center for Advanced Research</creatorcontrib><creatorcontrib>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</creatorcontrib><creatorcontrib>Kyoto University</creatorcontrib><creatorcontrib>bStructural Biology Research Center</creatorcontrib><creatorcontrib>aNagoya University Graduate School of Science</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><title>Biological &amp; pharmaceutical bulletin</title><addtitle>Biol Pharm Bull</addtitle><description>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</description><subject>Animals</subject><subject>artificial cell model</subject><subject>Artificial Cells</subject><subject>Biological membranes</subject><subject>Cell culture</subject><subject>Coated Vesicles</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Deep sea</subject><subject>Depolymerization</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Drug development</subject><subject>Encapsulation</subject><subject>External pressure</subject><subject>External stimuli</subject><subject>giant liposome</subject><subject>Hydrostatic Pressure</subject><subject>Lipid Bilayers</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Membranes</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - chemistry</subject><subject>Molecular modelling</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Particle Size</subject><subject>Polymerization</subject><subject>Pressure</subject><subject>Swine</subject><subject>Tubulin - chemistry</subject><subject>vesicle</subject><subject>Vesicles</subject><issn>0918-6158</issn><issn>1347-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUGP0zAQhS0EYsvCkSuKxIVLFnvsxs4RRbtdpF3BAbhatuu0qVw72Mmh_57JdikSF49G8-nN8xtC3jN6w0Coz3a0N5bJmlLeNC_IinEh6zWw9Uuyoi1TdcPW6oq8KeVAKZUU-GtyBa1oGVCxIvYx5XGfQtoNzoSqS3HKKVSprx4Hl9M02zn4-jY6M5Y5mGmIu2ozmDhVv3wZXPClsqeq25u4W0b3p21OZULOVd-zL2XO_i151ZtQ_Lvnek1-3t3-6O7rh2-br92Xh9qhq6kGJaA1QknrOPSCguStp15yxw13wvRu2zetkgoMduC8bDwYY2lr3LqRjl-TT2fdMaffsy-TPg7F-RBM9GkuGihtEWTAEf34H3pIc47oTgMIxqHh0CJVnykMopTsez3m4WjySTOql_A1hq8xfP0UPvIfnlVne_TbC_03bQQ2ZwCnS9wphiH6f7tdkXbAW6BVplBUMMqxgKagsEdLnHIp2fKB7qx0wLB3_rLK5Gk5ypMxwTRfnovBy9TtTdY-8j_sTa7b</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Takiguchi, Kingo</creator><creator>Hayashi, Masahito</creator><creator>Kazayama, Yuki</creator><creator>Toyota, Taro</creator><creator>Harada, Yoshie</creator><creator>Nishiyama, Masayoshi</creator><general>The Pharmaceutical Society of Japan</general><general>Pharmaceutical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2018</creationdate><title>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</title><author>Takiguchi, Kingo ; Hayashi, Masahito ; Kazayama, Yuki ; Toyota, Taro ; Harada, Yoshie ; Nishiyama, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>artificial cell model</topic><topic>Artificial Cells</topic><topic>Biological membranes</topic><topic>Cell culture</topic><topic>Coated Vesicles</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Deep sea</topic><topic>Depolymerization</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Drug development</topic><topic>Encapsulation</topic><topic>External pressure</topic><topic>External stimuli</topic><topic>giant liposome</topic><topic>Hydrostatic Pressure</topic><topic>Lipid Bilayers</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Membranes</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - chemistry</topic><topic>Molecular modelling</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Particle Size</topic><topic>Polymerization</topic><topic>Pressure</topic><topic>Swine</topic><topic>Tubulin - chemistry</topic><topic>vesicle</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takiguchi, Kingo</creatorcontrib><creatorcontrib>Hayashi, Masahito</creatorcontrib><creatorcontrib>Kazayama, Yuki</creatorcontrib><creatorcontrib>Toyota, Taro</creatorcontrib><creatorcontrib>Harada, Yoshie</creatorcontrib><creatorcontrib>Nishiyama, Masayoshi</creatorcontrib><creatorcontrib>cThe University of Tokyo Graduate School of Arts and Sciences</creatorcontrib><creatorcontrib>and HAKUBI Center for Advanced Research</creatorcontrib><creatorcontrib>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</creatorcontrib><creatorcontrib>Kyoto University</creatorcontrib><creatorcontrib>bStructural Biology Research Center</creatorcontrib><creatorcontrib>aNagoya University Graduate School of Science</creatorcontrib><creatorcontrib>Nagoya University</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biological &amp; pharmaceutical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takiguchi, Kingo</au><au>Hayashi, Masahito</au><au>Kazayama, Yuki</au><au>Toyota, Taro</au><au>Harada, Yoshie</au><au>Nishiyama, Masayoshi</au><aucorp>cThe University of Tokyo Graduate School of Arts and Sciences</aucorp><aucorp>and HAKUBI Center for Advanced Research</aucorp><aucorp>and (dInstitute for Integrated Cell-Material Sciences (WPI-iCeMS</aucorp><aucorp>Kyoto University</aucorp><aucorp>bStructural Biology Research Center</aucorp><aucorp>aNagoya University Graduate School of Science</aucorp><aucorp>Nagoya University</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure</atitle><jtitle>Biological &amp; pharmaceutical bulletin</jtitle><addtitle>Biol Pharm Bull</addtitle><date>2018</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>288</spage><epage>293</epage><pages>288-293</pages><issn>0918-6158</issn><eissn>1347-5215</eissn><abstract>For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.</abstract><cop>Japan</cop><pub>The Pharmaceutical Society of Japan</pub><pmid>29491204</pmid><doi>10.1248/bpb.b17-00366</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0918-6158
ispartof Biological and Pharmaceutical Bulletin, 2018/03/01, Vol.41(3), pp.288-293
issn 0918-6158
1347-5215
language eng
recordid cdi_proquest_miscellaneous_2009567123
source Full-Text Journals in Chemistry (Open access)
subjects Animals
artificial cell model
Artificial Cells
Biological membranes
Cell culture
Coated Vesicles
Cytoskeleton
Cytoskeleton - chemistry
Cytoskeleton - ultrastructure
Deep sea
Depolymerization
Drug Carriers
Drug Delivery Systems
Drug development
Encapsulation
External pressure
External stimuli
giant liposome
Hydrostatic Pressure
Lipid Bilayers
Lipids
Liposomes
Liposomes - chemistry
Membranes
microtubule
Microtubules
Microtubules - chemistry
Molecular modelling
Morphogenesis
Morphology
Osmotic Pressure
Osmotic stress
Particle Size
Polymerization
Pressure
Swine
Tubulin - chemistry
vesicle
Vesicles
title Morphological Control of Microtubule-Encapsulating Giant Vesicles by Changing Hydrostatic Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20Control%20of%20Microtubule-Encapsulating%20Giant%20Vesicles%20by%20Changing%20Hydrostatic%20Pressure&rft.jtitle=Biological%20&%20pharmaceutical%20bulletin&rft.au=Takiguchi,%20Kingo&rft.aucorp=cThe%20University%20of%20Tokyo%20Graduate%20School%20of%20Arts%20and%20Sciences&rft.date=2018&rft.volume=41&rft.issue=3&rft.spage=288&rft.epage=293&rft.pages=288-293&rft.issn=0918-6158&rft.eissn=1347-5215&rft_id=info:doi/10.1248/bpb.b17-00366&rft_dat=%3Cproquest_cross%3E2241326329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c702t-28429a487bc32f402739e0e73c3a3c4afcdf698782ac4a2ce76e2aab09ac567c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2241326329&rft_id=info:pmid/29491204&rfr_iscdi=true