Loading…

Intranasal Administration of a Naked Plasmid Reached Brain Cells and Expressed Green Fluorescent Protein, a Candidate for Future Gene Therapy Studies

Intranasal administration (Int adm) has been well-studied and offers the possibility to deliver larger molecular weight biologics, such as proteins, viral vectors, nanoparticles, and naked plasmids to the brain and treat a variety of diseases in the central nervous system. The predominant challenge...

Full description

Saved in:
Bibliographic Details
Published in:Archives of medical research 2017-10, Vol.48 (7), p.616-622
Main Authors: Oviedo, Norma, Manuel-Apolinar, Leticia, Orozco-Suárez, Sandra, Juárez-Cedillo, Teresa, Bekker Méndez, Vilma Carolina, Tesoro-Cruz, Emiliano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intranasal administration (Int adm) has been well-studied and offers the possibility to deliver larger molecular weight biologics, such as proteins, viral vectors, nanoparticles, and naked plasmids to the brain and treat a variety of diseases in the central nervous system. The predominant challenge in this field is finding efficient vectors that are capable of crossing the blood-brain barrier (BBB). Here, we investigated whether a naked plasmid (pIRES-hrGFP-1a), could cross the BBB, reach brain cells and express green fluorescent protein (GFP) after int-adm and propose it as candidate for future gene therapy studies. Thirty-six mice were divided into 2 groups. Eighteen animals were assigned to each cluster. Mice from experimental groups received 25 μg of pIRES-hrGFP-1a. The control groups received 25 μl of PBS. Plasmids were given intranasally by applying little drops in both nostrils. Twenty-four hours later, the mice were sacrificed, and their brains were removed. Later, PCR, RT-PCR, and immunohistochemical techniques were performed. pIRES-hrGFP-1a crossed the BBB and was mainly detected in the olfactory nerves (20%) and hypothalamus (16%). In contrast, GFP/18S-expressing mRNAs were detected mostly in the olfactory bulbs (95%), frontal cortex (71%) and amygdala (60%). GFP was detected in the olfactory bulb, hippocampus, frontal cortex and brainstem at 24 h. pIRES-hrGFP-1a could be considered a good candidate for gene therapy studies. In the future could be cloned some therapeutic genes in the pIRES-hrGFP-1a and could transcribe and translates deficient proteins that are required to restore a function.
ISSN:0188-4409
1873-5487
DOI:10.1016/j.arcmed.2018.03.003