Loading…
Photoinduced Electron Transfer in a BODIPY-ortho-Carborane Dyad Investigated by Time-Resolved Transient Absorption Spectroscopy
We report the results of photoinduced electron transfer (PET) in a novel dyad, in which a boron dipyrromethene (BODIPY) dye is covalently linked to o-carborane (o-Cb). In this dyad, BODIPY and o-Cb act as electron donor and acceptor, respectively. PET dynamics were investigated using a femtosecond t...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-04, Vol.122 (13), p.3391-3397 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the results of photoinduced electron transfer (PET) in a novel dyad, in which a boron dipyrromethene (BODIPY) dye is covalently linked to o-carborane (o-Cb). In this dyad, BODIPY and o-Cb act as electron donor and acceptor, respectively. PET dynamics were investigated using a femtosecond time-resolved transient absorption spectroscopic method. The free energy dependence of PET in the S1 and S2 states was examined on the basis of Marcus theory. PET in the S1 state occurs in the Marcus normal region. Rates are strongly influenced by the driving force (−ΔG), which is controlled by solvent polarity; thus, PET in the S1 state is faster in polar solvents than in nonpolar ones. However, PET does not occur from the higher energy S2 state despite large endothermic ΔG values, because deactivation via internal conversion is much faster than PET. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.8b01539 |