Loading…
A Metagenome-Based Investigation of Gene Relationships for Non-Substrate-Associated Microbial Phosphorus Cycling in the Water Column of Streams and Rivers
Phosphorus (P) is a nutrient of primary importance in all living systems, and it is especially important in streams and rivers which are sensitive to anthropogenic P inputs and eutrophication. Microbes are accepted as the primary mineralizers and solubilizers of P improving bioavailability for organ...
Saved in:
Published in: | Microbial ecology 2018-11, Vol.76 (4), p.856-865 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphorus (P) is a nutrient of primary importance in all living systems, and it is especially important in streams and rivers which are sensitive to anthropogenic P inputs and eutrophication. Microbes are accepted as the primary mineralizers and solubilizers of P improving bioavailability for organisms at all trophic levels. Here, we use a genomics approach with metagenome sequencing of 24 temperate streams and rivers representing a total P (TP) gradient to identify relationships between functional genes, functional gene groupings, P, and organisms within the P biogeochemical cycle. Combining information from network analyses, functional groupings, and system P levels, we have constructed a System Relational Overview of Gene Groupings (SROGG) which is a cohesive system level representation of P cycle gene and nutrient relationships. Using SROGG analysis in concert with other statistical approaches, we found that the compositional makeup of P cycle genes is strongly correlated to environmental P whereas absolute abundance of P genes shows no significant correlation to environmental P. We also found orthophosphate (PO₄³⁻) to be the dominant factor correlating with system P cycle gene composition with little evidence of a strong organic phosphorous correlation present even in more oligotrophic streams. |
---|---|
ISSN: | 0095-3628 1432-184X |
DOI: | 10.1007/s00248-018-1178-0 |