Loading…

Role of CuO in improving NH3 and SO2 capture on nanoporous Fe2O3 sorbents

[Display omitted] In this work, mixed Fe/Cu oxides as sorbents for SO2 and NH3 removal were investigated. Nanoporous iron oxide mixed with 10, 20 and 30 at.% CuO were prepared by thermal decomposition of the corresponding oxalates at 250 °C for 5 h in air. The mixed Fe/Cu oxalates were obtained from...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2018-07, Vol.521, p.206-215
Main Authors: Ma, Xiaowei, Zhao, Xiuyun, Liu, Aaron, Rankin, Matthew A., Croll, Lisa M., Dunlap, R.A., Dahn, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] In this work, mixed Fe/Cu oxides as sorbents for SO2 and NH3 removal were investigated. Nanoporous iron oxide mixed with 10, 20 and 30 at.% CuO were prepared by thermal decomposition of the corresponding oxalates at 250 °C for 5 h in air. The mixed Fe/Cu oxalates were obtained from the co-precipitation of iron/copper sulfate and ammonium oxalate during ultrasonication. The physical properties of the oxalate precursors and the resulting mixed Fe/Cu oxides were characterized with SEM, TGA-DSC, FTIR, powder XRD and Mössbauer spectroscopy. The porosity was studied by N2 adsorption-desorption isotherms and small angle X-ray scattering. Evenly dispersed CuO hindered the crystallization of Fe2O3, which significantly increased the specific BET surface area from 211 m2/g for Fe2O3 to 354 m2/g for Fe0.8Cu0.2Ox. As a result, SO2 and NH3 adsorption on Fe0.8Cu0.2Ox were enhanced by about 70% compared to Fe2O3. Compared to Fe2O3-impregnated activated carbons, nanoporous Fe0.8Cu0.2Ox could capture five times more SO2 per unit weight, which will be attractive for applications in respirators with lower weight and smaller size.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2018.03.027