Loading…
Role of CuO in improving NH3 and SO2 capture on nanoporous Fe2O3 sorbents
[Display omitted] In this work, mixed Fe/Cu oxides as sorbents for SO2 and NH3 removal were investigated. Nanoporous iron oxide mixed with 10, 20 and 30 at.% CuO were prepared by thermal decomposition of the corresponding oxalates at 250 °C for 5 h in air. The mixed Fe/Cu oxalates were obtained from...
Saved in:
Published in: | Journal of colloid and interface science 2018-07, Vol.521, p.206-215 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
In this work, mixed Fe/Cu oxides as sorbents for SO2 and NH3 removal were investigated. Nanoporous iron oxide mixed with 10, 20 and 30 at.% CuO were prepared by thermal decomposition of the corresponding oxalates at 250 °C for 5 h in air. The mixed Fe/Cu oxalates were obtained from the co-precipitation of iron/copper sulfate and ammonium oxalate during ultrasonication. The physical properties of the oxalate precursors and the resulting mixed Fe/Cu oxides were characterized with SEM, TGA-DSC, FTIR, powder XRD and Mössbauer spectroscopy. The porosity was studied by N2 adsorption-desorption isotherms and small angle X-ray scattering. Evenly dispersed CuO hindered the crystallization of Fe2O3, which significantly increased the specific BET surface area from 211 m2/g for Fe2O3 to 354 m2/g for Fe0.8Cu0.2Ox. As a result, SO2 and NH3 adsorption on Fe0.8Cu0.2Ox were enhanced by about 70% compared to Fe2O3. Compared to Fe2O3-impregnated activated carbons, nanoporous Fe0.8Cu0.2Ox could capture five times more SO2 per unit weight, which will be attractive for applications in respirators with lower weight and smaller size. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2018.03.027 |