Loading…

Excitons in Core–Shell Nanowires with Polygonal Cross Sections

The distinctive prismatic geometry of semiconductor core–shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb i...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2018-04, Vol.18 (4), p.2581-2589
Main Authors: Sitek, Anna, Urbaneja Torres, Miguel, Torfason, Kristinn, Gudmundsson, Vidar, Bertoni, Andrea, Manolescu, Andrei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The distinctive prismatic geometry of semiconductor core–shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well-separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square, and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multielectron method with those of an electron–hole model, and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.8b00309