Loading…
Activation of GSK3β/β-TrCP axis via PHLPP1 exacerbates Nrf2 degradation leading to impairment in cell survival pathway during diabetic nephropathy
NF-E2 p45-related factor 2 (Nrf2), is a major redox sensitive transcription factor that plays an essential role in regulating glucose metabolism. Inactivation of Nrf2 has been associated with diabetic complications however, mechanisms warranting Nrf2 suppression are incompletely understood. We hypot...
Saved in:
Published in: | Free radical biology & medicine 2018-05, Vol.120, p.414-424 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NF-E2 p45-related factor 2 (Nrf2), is a major redox sensitive transcription factor that plays an essential role in regulating glucose metabolism. Inactivation of Nrf2 has been associated with diabetic complications however, mechanisms warranting Nrf2 suppression are incompletely understood. We hypothesized that PHLPP1 activates GSK3β to induce β-TrCP mediated Nrf2 phosphorylation and degradation. In vivo study was carried out in STZ-NA induced type 2 diabetic male Wistar rats. GSK3β mediated Nrf2 ubiquitination was confirmed by administration of GSK3β inhibitor (LiCl; 60 mg/kg bwt.) which rapidly enhanced Nrf2 protein levels in STZ-NA treated diabetic rats. In addition, high glucose (30 mM; 48 h) treated renal proximal tubular cells NRK52E showed decreased Nrf2 nuclear localization, enhanced oxidative stress and caspase3 activation. While specific inhibition with GSK3β inhibitor SB216763 in vitro restored cellular homeostasis, glucose uptake and decreased apoptotic cell death. Immunoblotting and immunocytochemistry data demonstrated that aberrant renal glucose fluxes are associated with p53 mediated modulation in glucose transporter levels where expression of p53 is indirectly targeted through Nrf2 responsive MDM2 protein. Gene knockdown of PHLPP1 in NRK52E cells enhanced Nrf2-responsive antioxidant enzymes HO-1 and NQO-1 which suggested that PHLPP1 up-regulation during hyperglycemia lowers Nrf2 stability via GSK3β activation. More significantly, GSK3β inhibition enhanced Nrf2-ARE binding compared to diabetic rats, providing further confirmation for GSK3β/β-TrCP pathway in suppressing Nrf2 activation during diabetic renal injury. Taken together, our results indicate that PHLPP1 up-surged Nrf2 nuclear instability by promoting Nrf2/β-TrCP association and its inhibition may be critical in the management of diabetic nephropathy.
[Display omitted]
•Deficient Nrf2 signaling negatively impacts cell survival during hyperglycemia.•Up-regulation of PHLPP1 limits Akt signaling which subsequently down regulate Nrf2 expression through GSK3β activation.•Hyperglycemia induced PHLPP1 promotes Nrf2 ubiquitination via GSK3β/β-TrCP axis.•Specific inhibition of PHLPP1 and GSK3β promotes Nrf2 stability in hyperglycemic renal cells. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2018.04.550 |