Loading…

Molecular biology and gene therapy for glycogen storage disease type Ib

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose-6-phosphate (G6P) transporter (G6PT or SLC37A4). The primary function of G6PT is to translocate G6P from the cytoplasm into the lumen of the endoplasmic reticulum (ER). Inside the ER, G6P is hyd...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inherited metabolic disease 2018-12, Vol.41 (6), p.1007-1014
Main Authors: Chou, Janice Y., Cho, Jun-Ho, Kim, Goo-Young, Mansfield, Brian C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose-6-phosphate (G6P) transporter (G6PT or SLC37A4). The primary function of G6PT is to translocate G6P from the cytoplasm into the lumen of the endoplasmic reticulum (ER). Inside the ER, G6P is hydrolyzed to glucose and phosphate by either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α) or the ubiquitously expressed G6Pase-β. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6Pase-β causes GSD-I-related syndrome (GSD-Irs). In gluconeogenic organs, functional coupling of G6PT and G6Pase-α is required to maintain interprandial blood glucose homeostasis. In myeloid tissues, functional coupling of G6PT and G6Pase-β is required to maintain neutrophil homeostasis. Accordingly, GSD-Ib is a metabolic and immune disorder, manifesting impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. A G6pt knockout mouse model is being exploited to delineate the pathophysiology of GSD-Ib and develop new clinical treatment options, including gene therapy. The safety and efficacy of several G6PT-expressing recombinant adeno-associated virus pseudotype 2/8 vectors have been examined in murine GSD-Ib. The results demonstrate that the liver-directed gene transfer and expression safely corrects metabolic abnormalities and prevents hepatocellular adenoma (HCA) development. However, a second vector system may be required to correct myeloid and renal dysfunction in GSD-Ib. These findings are paving the way to a safe and efficacious gene therapy for entering clinical trials.
ISSN:0141-8955
1573-2665
DOI:10.1007/s10545-018-0180-5