Loading…
Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage
This research investigated the in-vitro wear and friction performance of polycarbonate urethane (PCU) 80A as they interact with articular cartilage, using a customised multidirectional pin-on-plate tester. Condyles were articulated against PCU 80A discs (Bionate I and Bionate II) (configuration 1) a...
Saved in:
Published in: | Journal of the mechanical behavior of biomedical materials 2018-06, Vol.82, p.394-402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research investigated the in-vitro wear and friction performance of polycarbonate urethane (PCU) 80A as they interact with articular cartilage, using a customised multidirectional pin-on-plate tester. Condyles were articulated against PCU 80A discs (Bionate
I and Bionate
II) (configuration 1) and the results arising from these tests were compared to those recorded during the sliding of PCU pins against cartilage plates (configuration 2). Configuration 1 produced steadily increasing coefficient of friction (COF) (up to 0.64 ± 0.05) and had the same trend as the cartilage-on-stainless steel articulation (positive control). When synovial fluid rather than bovine calf serum was used as lubricant, average COF significantly decreased from 0.50 ± 0.02-0.38 ± 0.06 for condyle-on-Bionate
I (80AI) and from 0.41 ± 0.02-0.24 ± 0.04 for condyle-on-Bionate
II (80AII) test configurations (p 0.05). A good correlation (R
=0.84) was found between the levels of average COF and the volume of cartilage lost during testing; increasing wear was found at higher levels of COF. Configuration 2 showed low and constant COF values (0.04 ± 0.01), which were closer to the negative control (0.03 ± 0.01) and significantly lower than configuration 1 (p |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2018.04.001 |