Loading…

Ecological Expansion and Extinction in the Late Ediacaran: Weighing the Evidence for Environmental and Biotic Drivers

The Ediacara Biota, Earth’s earliest communities of complex, macroscopic, multicellular organisms, appeared during the late Ediacaran Period, just prior to the Cambrian Explosion. Ediacara fossil assemblages consist of exceptionally preserved soft-bodied forms of enigmatic morphology and affinity wh...

Full description

Saved in:
Bibliographic Details
Published in:Integrative and comparative biology 2018-10, Vol.58 (4), p.688-702
Main Authors: Tarhan, Lidya G., Droser, Mary L., Cole, Devon B., Gehling, James G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ediacara Biota, Earth’s earliest communities of complex, macroscopic, multicellular organisms, appeared during the late Ediacaran Period, just prior to the Cambrian Explosion. Ediacara fossil assemblages consist of exceptionally preserved soft-bodied forms of enigmatic morphology and affinity which nonetheless represent a critical stepping-stone in the evolution of complex animal ecosystems. The Ediacara Biota has historically been divided into three successive Assemblages—the Avalon, the White Sea, and the Nama. Although the oldest (Avalon) Assemblage documents the initial appearance of several groups of Ediacara taxa, the two younger (White Sea and Nama) Assemblages record a particularly striking suite of ecological innovations, including the appearance of diverse Ediacara body plans—in tandem with the rise of bilaterian animals—as well as the emergence of novel ecological strategies such as movement, sexual reproduction, biomineralization, and the development of dense, heterogeneous benthic communities. Many of these ecological innovations appear to be linked to adaptations to heterogeneous substrates and shallow and energetic marine settings. In spite of these innovations, the majority of Ediacara taxa disappear by the end of the Ediacaran, with interpretations for this disappearance historically ranging from the closing of preservational windows to environmentally or biotically mediated extinction. However, in spite of the unresolved affinity and eventual extinction of individual Ediacara taxa, these distinctive ecological strategies persist across the Ediacaran–Cambrian boundary and are characteristic of younger animal-dominated communities of the Phanerozoic. The late Ediacaran emergence of these strategies may, therefore, have facilitated subsequent radiations of the Cambrian. In this light, the Ediacaran and Cambrian Periods, although traditionally envisioned as separate worlds, are likely to have been part of an ecological and evolutionary continuum.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icy020