Loading…

Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality

As a primary source of reactive nitrogen species, nitric oxide (NO) is a signaling molecule playing multiple roles in physiological processes. NO exerts these pleiotropic effects mainly through the covalent attachment to the sulfhydryl group of protein cysteines to form S-nitrosothiol (protein S-nit...

Full description

Saved in:
Bibliographic Details
Published in:Meat science 2018-10, Vol.144, p.135-148
Main Authors: Liu, Rui, Warner, Robyn Dorothy, Zhou, Guanghong, Zhang, Wangang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a primary source of reactive nitrogen species, nitric oxide (NO) is a signaling molecule playing multiple roles in physiological processes. NO exerts these pleiotropic effects mainly through the covalent attachment to the sulfhydryl group of protein cysteines to form S-nitrosothiol (protein S-nitrosylation). It has been two decades since NO was first investigated for its role in meat tenderization. Progress has been made, including studies by manipulating the NO levels in muscle cells, suggesting possible effects in the pre-slaughter and post-slaughter environment. NO has potential effects on the meat quality of beef, lamb, chicken and pork muscles. However, it has been difficult to determine the exact mechanism(s) of NO action as it has variable effects on meat quality including tenderness, water holding capacity and color. It is speculated that NO and protein S-nitrosylation may be involved in muscle to meat conversion through the regulation of postmortem biochemical pathways including glycolysis, Ca2+ release, proteolysis and apoptosis.
ISSN:0309-1740
1873-4138
DOI:10.1016/j.meatsci.2018.04.027