Loading…

Photodegradation of organic pollutants on the spruce needle wax surface under laboratory conditions

The photochemistry of selected organic compounds, including common pollutants, on the paraffin (as a model matrix) and spruce wax surfaces was studied under laboratory conditions. Two model transformations were evaluated: (1) intramolecular rearrangements of valerophenone and 2-nitrobenzaldehyde, an...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2004-12, Vol.57 (10), p.1399-1407
Main Authors: Dolinová, Jindřiška, Klánová, Jana, Klán, Petr, Holoubek, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photochemistry of selected organic compounds, including common pollutants, on the paraffin (as a model matrix) and spruce wax surfaces was studied under laboratory conditions. Two model transformations were evaluated: (1) intramolecular rearrangements of valerophenone and 2-nitrobenzaldehyde, and (2) hydrogen abstraction between an excited benzophenone and the hydrocarbon paraffin/wax chains. The steric or polar influence of the solid matrix on conformational and translational motion, its optical properties, hydrogen abstraction probabilities, and consequences of the guest-molecule segregation are discussed in this work. Furthermore, the photochemical reactivity of some common anthropogenic pollutants, such as chlorinated biphenyls (4-chlorobiphenyl, 2,4-dichlorobiphenyl, and 4,4′-dichlorobiphenyl), 4-chlorophenol, and DDT, was evaluated. The surface of spruce wax is presented as probable reaction medium for photochemical transformations. Although the matrix presents certain restrictions for bimolecular reactions, common photodegradations should be generally feasible in nature. In addition, paraffin was found to be a suitable model matrix for the studies of possible photochemical transformations that can occur on natural plant surfaces.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2004.09.009