Loading…
Prediction intervals for random-effects meta-analysis: A confidence distribution approach
Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins–Thompson–Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is...
Saved in:
Published in: | Statistical methods in medical research 2019-06, Vol.28 (6), p.1689-1702 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3 |
container_end_page | 1702 |
container_issue | 6 |
container_start_page | 1689 |
container_title | Statistical methods in medical research |
container_volume | 28 |
creator | Nagashima, Kengo Noma, Hisashi Furukawa, Toshi A |
description | Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins–Thompson–Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is a weakness in meta-analyses with few studies. We propose an alternative based on bootstrap and show by simulations that its coverage is close to the nominal level, unlike the Higgins–Thompson–Spiegelhalter method and its extensions. The proposed method was applied in three meta-analyses. |
doi_str_mv | 10.1177/0962280218773520 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2037051218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280218773520</sage_id><sourcerecordid>2239142980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3</originalsourceid><addsrcrecordid>eNp1kLtLBDEQh4Mo3vnorWTBxmY1z83FTg5fIGihhdUyl0w0crt7JruC_70571QQrKaYb76Z-RFywOgJY1qfUlNxPqGcTbQWitMNMmZS65IKITfJeNkul_0R2UnplVKqqTTbZMSNloqbakye7iO6YPvQtUVoe4zvME-F72IRoXVdU6L3aPtUNNhDCS3MP1JIZ8V5YbvWB4etxcKF1McwG74ssFjEDuzLHtny2YX767pLHi8vHqbX5e3d1c30_La0Uou-BAPKVFApW0nnkEuFqLwCNQOjWIVaoeaeWzoTDkDl-51QQirnuUOkTuyS45U3r30bMPV1E5LF-Rxa7IZUcyo0VSxnlNGjP-hrN8T8U6a4MExyM6GZoivKxi6liL5exNBA_KgZrZex139jzyOHa_Ewa9D9DHznnIFyBSR4xt-t_wo_AdG0imU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239142980</pqid></control><display><type>article</type><title>Prediction intervals for random-effects meta-analysis: A confidence distribution approach</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE</source><creator>Nagashima, Kengo ; Noma, Hisashi ; Furukawa, Toshi A</creator><creatorcontrib>Nagashima, Kengo ; Noma, Hisashi ; Furukawa, Toshi A</creatorcontrib><description>Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins–Thompson–Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is a weakness in meta-analyses with few studies. We propose an alternative based on bootstrap and show by simulations that its coverage is close to the nominal level, unlike the Higgins–Thompson–Spiegelhalter method and its extensions. The proposed method was applied in three meta-analyses.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280218773520</identifier><identifier>PMID: 29745296</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computer simulation ; Intervals ; Meta-analysis ; Parameter estimation ; Strength</subject><ispartof>Statistical methods in medical research, 2019-06, Vol.28 (6), p.1689-1702</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3</citedby><cites>FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3</cites><orcidid>0000-0003-4529-9045 ; 0000-0002-2520-9949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29745296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagashima, Kengo</creatorcontrib><creatorcontrib>Noma, Hisashi</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><title>Prediction intervals for random-effects meta-analysis: A confidence distribution approach</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins–Thompson–Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is a weakness in meta-analyses with few studies. We propose an alternative based on bootstrap and show by simulations that its coverage is close to the nominal level, unlike the Higgins–Thompson–Spiegelhalter method and its extensions. The proposed method was applied in three meta-analyses.</description><subject>Computer simulation</subject><subject>Intervals</subject><subject>Meta-analysis</subject><subject>Parameter estimation</subject><subject>Strength</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kLtLBDEQh4Mo3vnorWTBxmY1z83FTg5fIGihhdUyl0w0crt7JruC_70571QQrKaYb76Z-RFywOgJY1qfUlNxPqGcTbQWitMNMmZS65IKITfJeNkul_0R2UnplVKqqTTbZMSNloqbakye7iO6YPvQtUVoe4zvME-F72IRoXVdU6L3aPtUNNhDCS3MP1JIZ8V5YbvWB4etxcKF1McwG74ssFjEDuzLHtny2YX767pLHi8vHqbX5e3d1c30_La0Uou-BAPKVFApW0nnkEuFqLwCNQOjWIVaoeaeWzoTDkDl-51QQirnuUOkTuyS45U3r30bMPV1E5LF-Rxa7IZUcyo0VSxnlNGjP-hrN8T8U6a4MExyM6GZoivKxi6liL5exNBA_KgZrZex139jzyOHa_Ewa9D9DHznnIFyBSR4xt-t_wo_AdG0imU</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Nagashima, Kengo</creator><creator>Noma, Hisashi</creator><creator>Furukawa, Toshi A</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4529-9045</orcidid><orcidid>https://orcid.org/0000-0002-2520-9949</orcidid></search><sort><creationdate>20190601</creationdate><title>Prediction intervals for random-effects meta-analysis: A confidence distribution approach</title><author>Nagashima, Kengo ; Noma, Hisashi ; Furukawa, Toshi A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Intervals</topic><topic>Meta-analysis</topic><topic>Parameter estimation</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagashima, Kengo</creatorcontrib><creatorcontrib>Noma, Hisashi</creatorcontrib><creatorcontrib>Furukawa, Toshi A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagashima, Kengo</au><au>Noma, Hisashi</au><au>Furukawa, Toshi A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction intervals for random-effects meta-analysis: A confidence distribution approach</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>28</volume><issue>6</issue><spage>1689</spage><epage>1702</epage><pages>1689-1702</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Prediction intervals are commonly used in meta-analysis with random-effects models. One widely used method, the Higgins–Thompson–Spiegelhalter prediction interval, replaces the heterogeneity parameter with its point estimate, but its validity strongly depends on a large sample approximation. This is a weakness in meta-analyses with few studies. We propose an alternative based on bootstrap and show by simulations that its coverage is close to the nominal level, unlike the Higgins–Thompson–Spiegelhalter method and its extensions. The proposed method was applied in three meta-analyses.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29745296</pmid><doi>10.1177/0962280218773520</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4529-9045</orcidid><orcidid>https://orcid.org/0000-0002-2520-9949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2019-06, Vol.28 (6), p.1689-1702 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_2037051218 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE |
subjects | Computer simulation Intervals Meta-analysis Parameter estimation Strength |
title | Prediction intervals for random-effects meta-analysis: A confidence distribution approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20intervals%20for%20random-effects%20meta-analysis:%20A%20confidence%20distribution%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Nagashima,%20Kengo&rft.date=2019-06-01&rft.volume=28&rft.issue=6&rft.spage=1689&rft.epage=1702&rft.pages=1689-1702&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280218773520&rft_dat=%3Cproquest_cross%3E2239142980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-a9a596a65c64dde245ee5f5a5ba9516e75e72f2c0b3daa5049d35345df2dee0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239142980&rft_id=info:pmid/29745296&rft_sage_id=10.1177_0962280218773520&rfr_iscdi=true |