Loading…

Recent advances in synthetic biology of cyanobacteria

Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them pote...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2018-07, Vol.102 (13), p.5457-5471
Main Authors: Sengupta, Annesha, Pakrasi, Himadri B., Wangikar, Pramod P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3
cites cdi_FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3
container_end_page 5471
container_issue 13
container_start_page 5457
container_title Applied microbiology and biotechnology
container_volume 102
creator Sengupta, Annesha
Pakrasi, Himadri B.
Wangikar, Pramod P.
description Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this “green” chassis.
doi_str_mv 10.1007/s00253-018-9046-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2037055203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A542672485</galeid><sourcerecordid>A542672485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxYNY7Fr9AL7IgC_1YerNv8nMYym2FgpCq88hk71ZU2aTmmRk99s3y1bLinIf7iX5ncO9HELeUTijAOpTBmCSt0D7dgDRtZsXZEEFZy10VLwkC6BKtkoO_TF5nfM9AGV9170ix2xQQnScLoi8RYuhNGb5ywSLufGhydtQfmDxthl9nOJq20TX2K0JcTS2YPLmDTlyZsr49qmfkO-Xn79dfGlvvl5dX5zftFZSKK3kI3B0TAnGe2OFFApN57hVQ52Z40qZAYx0SC3YXtkB0MnRwVAF4Aw_Iad734cUf86Yi177bHGaTMA4Z82AK5Cytop--Au9j3MKdbsd1UnVy549UyszofbBxZKM3Znq87pRp5joZaXO_kHVWuLa2xjQ-fp-IPh4IKhMwU1ZmTlnfX13e8jSPWtTzDmh0w_Jr03aagp6F6vex6prrHoXq95Uzfun4-Zxjcs_it85VoDtgVy_wgrT8_X_d30EcwipQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036578582</pqid></control><display><type>article</type><title>Recent advances in synthetic biology of cyanobacteria</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Sengupta, Annesha ; Pakrasi, Himadri B. ; Wangikar, Pramod P.</creator><creatorcontrib>Sengupta, Annesha ; Pakrasi, Himadri B. ; Wangikar, Pramod P.</creatorcontrib><description>Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this “green” chassis.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-018-9046-x</identifier><identifier>PMID: 29744631</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioengineering ; Biofuels ; Biological activity ; Biology ; Biomedical and Life Sciences ; Biosensing Techniques ; Biosensors ; Biosynthesis ; Biotechnology ; Carbon dioxide ; Chassis ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - physiology ; Diurnal ; Diurnal variations ; Fine chemicals ; Forecasts and trends ; Genetic Engineering ; Heterotrophic organisms ; Industrial engineering ; Life Sciences ; Manufacturing engineering ; Metals ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Organic chemistry ; Photosynthesis ; Physiological aspects ; Proteins ; Synthetic biology ; Synthetic Biology - methods ; Synthetic Biology - trends</subject><ispartof>Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5457-5471</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3</citedby><cites>FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2036578582/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2036578582?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29744631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Annesha</creatorcontrib><creatorcontrib>Pakrasi, Himadri B.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><title>Recent advances in synthetic biology of cyanobacteria</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this “green” chassis.</description><subject>Bioengineering</subject><subject>Biofuels</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chassis</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - physiology</subject><subject>Diurnal</subject><subject>Diurnal variations</subject><subject>Fine chemicals</subject><subject>Forecasts and trends</subject><subject>Genetic Engineering</subject><subject>Heterotrophic organisms</subject><subject>Industrial engineering</subject><subject>Life Sciences</subject><subject>Manufacturing engineering</subject><subject>Metals</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Organic chemistry</subject><subject>Photosynthesis</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Synthetic biology</subject><subject>Synthetic Biology - methods</subject><subject>Synthetic Biology - trends</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV9rFDEUxYNY7Fr9AL7IgC_1YerNv8nMYym2FgpCq88hk71ZU2aTmmRk99s3y1bLinIf7iX5ncO9HELeUTijAOpTBmCSt0D7dgDRtZsXZEEFZy10VLwkC6BKtkoO_TF5nfM9AGV9170ix2xQQnScLoi8RYuhNGb5ywSLufGhydtQfmDxthl9nOJq20TX2K0JcTS2YPLmDTlyZsr49qmfkO-Xn79dfGlvvl5dX5zftFZSKK3kI3B0TAnGe2OFFApN57hVQ52Z40qZAYx0SC3YXtkB0MnRwVAF4Aw_Iad734cUf86Yi177bHGaTMA4Z82AK5Cytop--Au9j3MKdbsd1UnVy549UyszofbBxZKM3Znq87pRp5joZaXO_kHVWuLa2xjQ-fp-IPh4IKhMwU1ZmTlnfX13e8jSPWtTzDmh0w_Jr03aagp6F6vex6prrHoXq95Uzfun4-Zxjcs_it85VoDtgVy_wgrT8_X_d30EcwipQg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Sengupta, Annesha</creator><creator>Pakrasi, Himadri B.</creator><creator>Wangikar, Pramod P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180701</creationdate><title>Recent advances in synthetic biology of cyanobacteria</title><author>Sengupta, Annesha ; Pakrasi, Himadri B. ; Wangikar, Pramod P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioengineering</topic><topic>Biofuels</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chassis</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - physiology</topic><topic>Diurnal</topic><topic>Diurnal variations</topic><topic>Fine chemicals</topic><topic>Forecasts and trends</topic><topic>Genetic Engineering</topic><topic>Heterotrophic organisms</topic><topic>Industrial engineering</topic><topic>Life Sciences</topic><topic>Manufacturing engineering</topic><topic>Metals</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Organic chemistry</topic><topic>Photosynthesis</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Synthetic biology</topic><topic>Synthetic Biology - methods</topic><topic>Synthetic Biology - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Annesha</creatorcontrib><creatorcontrib>Pakrasi, Himadri B.</creatorcontrib><creatorcontrib>Wangikar, Pramod P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Annesha</au><au>Pakrasi, Himadri B.</au><au>Wangikar, Pramod P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in synthetic biology of cyanobacteria</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>102</volume><issue>13</issue><spage>5457</spage><epage>5471</epage><pages>5457-5471</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this “green” chassis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29744631</pmid><doi>10.1007/s00253-018-9046-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2018-07, Vol.102 (13), p.5457-5471
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2037055203
source ABI/INFORM Collection; Springer Nature
subjects Bioengineering
Biofuels
Biological activity
Biology
Biomedical and Life Sciences
Biosensing Techniques
Biosensors
Biosynthesis
Biotechnology
Carbon dioxide
Chassis
Cyanobacteria
Cyanobacteria - genetics
Cyanobacteria - physiology
Diurnal
Diurnal variations
Fine chemicals
Forecasts and trends
Genetic Engineering
Heterotrophic organisms
Industrial engineering
Life Sciences
Manufacturing engineering
Metals
Microbial Genetics and Genomics
Microbiology
Mini-Review
Organic chemistry
Photosynthesis
Physiological aspects
Proteins
Synthetic biology
Synthetic Biology - methods
Synthetic Biology - trends
title Recent advances in synthetic biology of cyanobacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20synthetic%20biology%20of%20cyanobacteria&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Sengupta,%20Annesha&rft.date=2018-07-01&rft.volume=102&rft.issue=13&rft.spage=5457&rft.epage=5471&rft.pages=5457-5471&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-018-9046-x&rft_dat=%3Cgale_proqu%3EA542672485%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-53b03ef274238ac4547ea6f3c794542f377a90a5fe1c0c87c90ef5bf094230fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036578582&rft_id=info:pmid/29744631&rft_galeid=A542672485&rfr_iscdi=true