Loading…

Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces

Annuloplasty ring repair is a common procedure for the correction of mitral valve regurgitation. Commercially available rings vary in dimensions and material properties. Annuloplasty ring suture dehiscence from the native annulus is a catastrophic yet poorly understood phenomenon that has been repor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2018-06, Vol.75, p.58-66
Main Authors: Pierce, Eric L., Bloodworth, Charles H., Imai, Akito, Okamoto, Keitaro, Saito, Yoshiaki, Gorman, Robert C., Gorman, Joseph H., Yoganathan, Ajit P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Annuloplasty ring repair is a common procedure for the correction of mitral valve regurgitation. Commercially available rings vary in dimensions and material properties. Annuloplasty ring suture dehiscence from the native annulus is a catastrophic yet poorly understood phenomenon that has been reported across ring types. Recognizing that sutures typically dehisce from the structurally weaker posterior annulus, our group is conducting a multi-part study in search of ring design parameters that influence forces acting on posterior annular sutures in the beating heart. Herein, we report the effect of ring rigidity on suture forces. Measurements utilized custom force sensors, attached to annuloplasty rings and implanted in normal ovine subjects via standard surgical procedure. Tested rings included the semi-rigid Physio (Edwards Lifesciences) and rigid and flexible prototypes of matching geometry. While no significant differences due to ring stiffness existed for sutures in the anterior region, posterior forces were significantly reduced with use of the flexible ring (rigid: 1.95 ± 0.96 N, semi-rigid: 1.76 ± 1.19 N, flexible: 1.04 ± 0.63 N; p 
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2018.04.043