Loading…
Reduced iron associated with secondary nitrite maxima in the Arabian Sea
Dissolved iron and Fe(II) were measured in the oxygen minimum zone (OMZ) of the Arabian Sea in September 2004. The OMZ is a well-demarcated feature characterized by high rates of denitrification, and a deep nitrite maximum coinciding with oxygen levels below 1 μmol L −1. This zone is significantly e...
Saved in:
Published in: | Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2007-08, Vol.54 (8), p.1341-1349 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dissolved iron and Fe(II) were measured in the oxygen minimum zone (OMZ) of the Arabian Sea in September 2004. The OMZ is a well-demarcated feature characterized by high rates of denitrification, and a deep nitrite maximum coinciding with oxygen levels below 1
μmol
L
−1. This zone is significantly enriched in dissolved Fe relative to overlying and underlying waters and up to 50% of the dissolved Fe is present as Fe(II). The maxima in Fe(II) are at the same depth as the deep nitrite maxima, centered around 200–250
m. They coincide with a local maximum in total dissolved Fe, suggesting that Fe accumulates at this depth because of the greater solubility of Fe(II) over Fe(III). Fe(II) is thermodynamically unstable even at submicromolar oxygen levels, so active biological reduction is the most plausible source. To our knowledge, this is the first report of a potential link between Fe reduction, elevated dissolved Fe concentrations, and nitrite accumulation within an OMZ. Denitrification has a high Fe requirement associated with the metalloenzymes for nitrate and nitrite reduction, so in situ redox cycling of Fe has important implications for the nitrogen cycle. |
---|---|
ISSN: | 0967-0637 1879-0119 |
DOI: | 10.1016/j.dsr.2007.04.004 |