Loading…

The Trail Making test: a study of its ability to predict falls in the acute neurological in-patient population

Objective: To determine whether tests of cognitive function and patient-reported outcome measures of motor function can be used to create a machine learning-based predictive tool for falls. Design: Prospective cohort study. Setting: Tertiary neurological and neurosurgical center. Subjects: In all, 3...

Full description

Saved in:
Bibliographic Details
Published in:Clinical rehabilitation 2018-10, Vol.32 (10), p.1396-1405
Main Authors: Mateen, Bilal Akhter, Bussas, Matthias, Doogan, Catherine, Waller, Denise, Saverino, Alessia, Király, Franz J, Playford, E Diane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: To determine whether tests of cognitive function and patient-reported outcome measures of motor function can be used to create a machine learning-based predictive tool for falls. Design: Prospective cohort study. Setting: Tertiary neurological and neurosurgical center. Subjects: In all, 337 in-patients receiving neurosurgical, neurological, or neurorehabilitation-based care. Main Measures: Binary (Y/N) for falling during the in-patient episode, the Trail Making Test (a measure of attention and executive function) and the Walk-12 (a patient-reported measure of physical function). Results: The principal outcome was a fall during the in-patient stay (n = 54). The Trail test was identified as the best predictor of falls. Moreover, addition of other variables, did not improve the prediction (Wilcoxon signed-rank P < 0.001). Classical linear statistical modeling methods were then compared with more recent machine learning based strategies, for example, random forests, neural networks, support vector machines. The random forest was the best modeling strategy when utilizing just the Trail Making Test data (Wilcoxon signed-rank P < 0.001) with 68% (± 7.7) sensitivity, and 90% (± 2.3) specificity. Conclusion: This study identifies a simple yet powerful machine learning (Random Forest) based predictive model for an in-patient neurological population, utilizing a single neuropsychological test of cognitive function, the Trail Making test.
ISSN:0269-2155
1477-0873
DOI:10.1177/0269215518771127