Loading…
Sandwich fusion of CBM9_2 to enhance xylanase thermostability and activity
Used as model for sandwich fusion, a mesophilic Aspergillus niger GH11 xylanase (Xyn) was fused into C2-Xyn-C2 with a thermophilic Thermotaga maritima GH10 xylanase carbohydrate-binding module CBM9_2 (C2). Linearized plasmids C2-pET20b-C2-Xyn were amplified from template pET20b-Xyn-C2 with a 4.3 kb...
Saved in:
Published in: | International journal of biological macromolecules 2018-10, Vol.117, p.586-591 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Used as model for sandwich fusion, a mesophilic Aspergillus niger GH11 xylanase (Xyn) was fused into C2-Xyn-C2 with a thermophilic Thermotaga maritima GH10 xylanase carbohydrate-binding module CBM9_2 (C2). Linearized plasmids C2-pET20b-C2-Xyn were amplified from template pET20b-Xyn-C2 with a 4.3 kb C2-pET20b megaprimer, ligated into circular plasmids in blunt-end ligation, and transformed into E. coli BL21 (DE3) cells. The C2-Xyn-C2 had optimum activity at 45 °C and pH 4.2, a 2.85 h thermal inactivation half-life at 80 °C and a 8.69 h at 50 °C, with the 8.69 h value 24.8-, 7.5-, and 7.1-fold longer than the Xyn and single terminal fusion enzymes Xyn-C2, and C2-Xyn. Thermodynamics showed that the enzyme had a 1.8 °C higher melting temperature, lower values ΔS, ΔΔG, and a denser structure than the Xyn. Kinetics showed that the C2-Xyn-C2 catalytic efficiency was 1.2–~6-fold and 2.7–~7.9-fold higher on beechwood and oat-spelt xylan than those of the enzymes Xyn, Xyn-C2, and C2-Xyn. The sandwich fusion evolved the xylanase with “armor-hands” to enhance simultaneously thermostability and activity in quality. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2018.05.199 |