Loading…

The βγ-crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability

βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca 2+ -binding proteins with a large...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2018-08, Vol.102 (16), p.6997-7005
Main Authors: Cerminati, Sebastián, Paoletti, Luciana, Peirú, Salvador, Menzella, Hugo G., Castelli, María Eugenia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca 2+ -binding proteins with a large diversity and variable properties in Ca 2+ binding and stability. We have recently described a new phosphatidylinositol phospholipase C from Lysinibacillus sphaericus (LS-PIPLC) which was shown to efficiently remove phosphatidylinositol from crude vegetable oil. Here, the role of the C-terminal βγ-crystallin domain of LS-PIPLC was analyzed in the context of the whole protein. A truncated protein in which the C-terminal βγ-crystallin domain was deleted (LS-PIPLC ΔCRY ) is catalytically as efficient as the full-length protein (LS-PIPLC). However, the thermal and chemical stability of LS-PIPLC ΔCRY are highly affected, demonstrating a stabilizing role for this domain. It is also shown that the presence of Ca 2+ increases the thermal and chemical stability of the protein both in aqueous media and in oil, making LS-PIPLC an excellent candidate for use in industrial soybean oil degumming.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-018-9136-9